2009年9月7日 東大・本郷

<u>放射光基礎講習会</u> 先端研究への活用法:回折・散乱による測定 村上 洋一

高エネルギー加速器研究機構・物質構造科学研究所・ 構造物性研究センター

講演概要 構造物性研究 回折・散乱実験の基礎 電子による×線の散乱:共鳴×線散乱 電子自由度(電荷・スピン・軌道)秩序の観測

電子の持つ3つの自由度の秩序構造

電荷秩序

∖⊕ ∕∔

金属

磁石にならない

 (\checkmark)

常磁性体

軌道無秩序

物質の電気的性質

磁石になる <u> 強磁性体・</u> 反強磁性体

強軌道秩序· 反強軌道秩序 物質の磁気的性質

物質の???

Jahr and the seal for the			
原子の中多極子	の電子自由度 ・による理解	+q	+q
<mark>電気多極子</mark> 2 ⁽²¹⁾ 極子	$lace{}_{+q}$	$\overrightarrow{r_0}$	$\overrightarrow{r_0}$ +q
(単極子、 磁気多極子 2(21+1)極子	四極子、・・)	● —q 双極子	$-q \bullet \overrightarrow{r_1}$ 四極子
20117極于 (双極子、	八極子、 · · ·)	dipole	quadrupole
	電荷	スピン	軌道
ランク	0(スカラー)	1(ベクトル)	2(テンソル)
成分	1	3	5
共役な場	電場	磁場	格子歪み・結晶場
相互作用	クーロン相互作用	双極子相互作用	Jahn-Teller 相互作用
		交換相互作用	交換相互作用?
マクロな物性	電気伝導度	磁性	?

電子による 緑の散乱1

量子化された電磁場中での電子系のハミルトニアン

$$\begin{split} H &= \sum_{j} \frac{1}{2m} \left(p_{j} - \frac{e}{c} A(r_{j}) \right)^{2} + \sum_{i,j} V(r_{ij}) - \frac{e\hbar}{2mc} \sum_{j} s_{j} \cdot \nabla \times A(r_{j}) \\ &- \frac{e\hbar}{2m^{2}c^{2}} \sum_{j} s_{j} \cdot E(r_{j}) \times \left(p_{j} - \frac{e}{c} A(r_{j}) \right) + \sum_{k,\lambda} \hbar \omega_{k} \left(a_{k\lambda}^{+} a_{k\lambda} + \frac{1}{2} \right) \\ \textcircled{\textbf{T}} \\ \hline \textbf{T} \\ \textbf{T$$

電子によるX線の散乱2

この状態間の単位時間あたりの遷移確率 wはフェルミの黄金則より

$$w = \frac{2\pi}{\hbar} \left| \langle f | H' | i \rangle + \sum_{n} \frac{\langle f | H' | n \rangle \langle n | H' | i \rangle}{E_{i} - E_{n}} \right|^{2} \delta(E_{i} - E_{f}) \qquad E_{i} = E_{a} + \hbar\omega_{k}, \qquad E_{f} = E_{b} + \hbar\omega_{k},$$

散乱断面積は,遷移確率wと終状態の状態密度 $ho(E_f)$ を用いて

$$\left(\frac{d^{2}\sigma}{d\Omega dE}\right) = \frac{w \cdot \rho(E_{f})}{I_{0}},$$
$$\rho(E_{f}) = \frac{V \cdot \omega_{k}^{2}}{(2\pi)^{3} \hbar c^{3}}, \quad I_{0} = \frac{c}{V} :$$
入射 X 線の光子密度

電子による水線の散乱3

断面積は、
$$\left(\frac{\hbar\omega}{mc^2}\right)^2$$
までのオーダーで

$$\begin{pmatrix} \frac{d^{2}\sigma}{d\Omega dE} \end{pmatrix}_{\substack{a \to b \\ \lambda \to \lambda'}} = \left(\frac{e^{2}}{mc^{2}} \right) + \frac{\hbar^{2}}{m} \sum_{c,i,j} \begin{cases} \frac{\left\langle b \middle| \left(\frac{\varepsilon' \cdot p_{i}}{\hbar} - i(k' \times \varepsilon') \cdot s_{i} \right) e^{-k' \cdot r_{i}} \middle| c \right\rangle \left\langle c \middle| \left(\frac{\varepsilon \cdot p_{j}}{\hbar} + i(k \times \varepsilon) \cdot s_{j} \right) e^{ik \cdot r_{j}} \middle| a \right\rangle \\ E_{a} - E_{c} + \hbar \omega_{k} - \frac{i\Gamma_{c}}{2} \\ + \frac{\left\langle b \middle| \left(\frac{\varepsilon' \cdot p_{j}}{\hbar} + i(k \times \varepsilon) \cdot s_{j} \right) e^{ik \cdot r_{j}} \middle| c \right\rangle \left\langle c \middle| \left(\frac{\varepsilon' \cdot p_{i}}{\hbar} - i(k' \times \varepsilon') \cdot s_{i} \right) e^{-ik' \cdot r_{i}} \middle| a \right\rangle \\ + \frac{\left\langle b \middle| \left(\frac{\varepsilon' \cdot p_{j}}{\hbar} + i(k \times \varepsilon) \cdot s_{j} \right) e^{ik \cdot r_{j}} \middle| c \right\rangle \left\langle c \middle| \left(\frac{\varepsilon' \cdot p_{i}}{\hbar} - i(k' \times \varepsilon') \cdot s_{i} \right) e^{-ik' \cdot r_{i}} \middle| a \right\rangle \\ + \frac{\left\langle b \middle| \left(\frac{\varepsilon' \cdot p_{j}}{\hbar} + i(k \times \varepsilon) \cdot s_{j} \right) e^{ik \cdot r_{j}} \middle| c \right\rangle \left\langle c \middle| \left(\frac{\varepsilon' \cdot p_{i}}{\hbar} - i(k' \times \varepsilon') \cdot s_{i} \right) e^{-ik' \cdot r_{i}} \middle| a \right\rangle \right\rangle \\ \times \delta(E_{a} - E_{b} + \hbar \omega_{k} - \hbar \omega_{k'})$$

$$\varepsilon \equiv \varepsilon_{k\lambda}, \quad \varepsilon' \equiv \varepsilon^*_{k'\lambda'}, \quad K = k - k'$$

 $\sum_{j} e^{iK \cdot r_j}$ は電子密度のフーリエ変換

 $|c\rangle$ は電子系の中間励起状態 Γ_c は中間励起状態の寿命の逆数 $\sum_{j} e^{iK\cdot r_j} \cdot s_j$ はスピン密度のフーリエ変換

電子による大線の散乱4

非共鳴X線磁気散乱

共鳴X線散乱

外殻非占有準位
入射×線
(k, ω_k, λ)
内殻準位
M^{×+1s}
中間励起状態

$$f_{res} = -\frac{e^2}{mc^2} \sum_{c} \frac{m\omega_{ca}^3}{\omega} \sum_{\alpha,\beta} \varepsilon'_{\alpha} \varepsilon_{\beta} \sum_{\gamma,\beta} \frac{\left\langle a \middle| R_a - \frac{1}{2}iQ_{a\gamma}k'_{\gamma} \middle| c \right\rangle \left\langle c \middle| R_{\beta} + \frac{1}{2}iQ_{\beta\delta}k_{\delta} \middle| a \right\rangle}{\hbar\omega - \hbar\omega_{ca} - \frac{i\Gamma_{c}}{2}}$$

工で、 $\hbar\omega_{ca} = E_{c} - E_{a}$, $\alpha, \beta, \gamma, \delta$ は直交座標 x,y,zを表している.
 $M^{×+4p}$
共鳴散乱過程
 $\hbar\omega_{k} \approx E_{c} - E_{a}$: 共鳴の条件
 $\hbar\omega_{k} \approx E_{c} - E_{a}$: 共鳴の条件
電流密度演算子
 $f_{res} = \frac{c^2}{m^2 c^2} \sum_{c} (\frac{E_a - E_c}{\hbar\omega}) \frac{\langle a \middle| \varepsilon' \cdot J^+(k') \middle| c \rangle \langle c \middle| \varepsilon \cdot J(k) \middle| a \rangle}{E_a - E_c + \hbar\omega - \frac{i\Gamma_c}{2}}$
 $R_{\alpha} = \sum_{j} r_{j\alpha}$, $Q_{\alpha\gamma} = \sum_{j} r_{j\alpha} r_{j\gamma}$
 $E1 遷 8, E2 遷 8, E1 - E2 遷 8$

共鳴×線散乱一電気双極子による散乱一

$$f_{res}^{(E1)} = -\frac{e^2}{mc^2} \sum_{c} \frac{m\omega_{ca}}{\omega} \sum_{\alpha,\beta} \varepsilon'_{\alpha} \varepsilon_{\beta} f_{\alpha\beta} \quad \text{ 電気双極子(E1) 遷移による共鳴散乱振幅}$$
$$f_{\alpha\beta} = \frac{\langle a|R_{\alpha}|c\rangle\langle c|R_{\beta}|a\rangle}{\hbar\omega - \hbar\omega_{ca} - \frac{i\Gamma_{c}}{2}} \quad f_{\alpha\beta} \text{ i 3 \times 3$ 0} \text{ f 0} \text{f o$ a f o$ $$$

等方的対角成分 $f_{\alpha\beta}^{(i)}$,反対称的非対角成分 $f_{\alpha\beta}^{(a)}$,対称的成分 $f_{\alpha\beta}^{(s)}$ 電気単極子(電荷),磁気双極子(スピン),電気四極子(軌道)からの寄与

$$f_{res}^{(E1)} = f_{\alpha\beta}^{(i)} + f_{\alpha\beta}^{(a)} + f_{\alpha\beta}^{(s)} = d_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - d_1 \begin{pmatrix} 0 & u_z & -u_y \\ -u_z & 0 & u_x \\ u_y & -u_x & 0 \end{pmatrix}$$

 $+d_{2}\begin{pmatrix}u_{x}^{2}-\frac{1}{3} & u_{x}u_{y} & u_{x}u_{z}\\u_{y}u_{x} & u_{y}^{2}-\frac{1}{3} & u_{y}u_{z}\\u_{z}u_{x} & u_{z}u_{y} & u_{z}^{2}-\frac{1}{3}\end{pmatrix}$

磁気秩序や軌道秩序により原子がある軸の まわりに異方的になったと仮定して、その 主軸方向の単位ベクトルを $u = (u_x u_y u_z)$ とする.

Mn酸化物における軌道自由度の秩序

e。電子における軌道自由度の擬スピン表示

擬スピン表示

超格子反射 Element Specific

異方性 E_{anis} --> 軌道秩序変数

$I_{\rm S}({\rm E}) \longrightarrow E$

Diffraction + Spectroscopy

Y. Murakami, et al., PRL 81, 582 (1998).

軌道秩序パターシを調べる1

r_x dependence of RXS intensity

Wave function of ordered orbital

H. Nakao et al., PRB 66 (2002) 184419.

秩序変数の温度依存性を調べる

Y. Murakami, et al., PRL 81, 582 (1998).

N. Nakao, et al., JPSJ 70, 1857 (2001).

Resonant X-ray Scattering from Various Compounds

Ordering States of 3d, 4d, 5d orbitals (transition metal compounds)

4f orbitals 5f orbitals (rare earth compounds) (actinoid compounds)

電子自由度秩序構造と物性

極限条件下での水線回折・散乱

高圧力下

ダイヤモンドアンビルセル + ベリリウムガスケット

共鳴 X 線散乱 P < 10 Gpa

大和田(原子力機構)

強磁場下

超伝導磁石 H = 8 T + 回折計

より強い磁場 パルス磁場

松田・野尻 (東北大金研) 稲見 (原子力機構)

H < 33T, T > 10K

Charge Ordering of NaV₂O₅

Spin-Peierls-like phase transition NaV_2O_5 E Ρ emperature (30 Devil's Staircase-type Phases C_{3/16} $C_{1/4}$ C_0 under High Pressure C_{2/11} 0.5 1.0 0.0 1.5 2.0 25 Pressure (GPa) **C**_{3/17} Ising variable (a) Temperature (K) C_{2/13} V4.5+_O_V4.5+ $C_{1/7}$ $C_{1/5}$ (b) 20 C 1/4 √⁴⁺O5 pyramid > 0 Co V⁵⁺O5 pyramid 15 $J_0(=J_1) > 0$ 0.9 1.2 0.7 0.8 1.0 1.1 Na NaV₂O₅ **ANNNI** model Pressure (GPa)

K. Ohwada et al. PRL. 87 (2001) 086402, PRL 94 (2005) 106401.

共鳴非弾性又線散乱

The RIXS is a powerful technique to obtain information on the momentum dependence of the elementary excitations.

Ex. Charge Transfer excitation *d-d* excitation between the transition metal and oxygenon the transition metal site

Collective Orbital Excitation

Individual Orbital Excitation

E. Saitoh, Nature 410, 180 (2001)

by S. Ishihara & S. Maekawa

Orbital Wave Particle-hole Excitation cf. Spin Wave cf. Stoner Excitation in magnetically ordered systems 共鳴非弾性/線散乱装置

Mirror / Sample Detector N Spectrometer

Normal Resolution: 500 meV High Resolution : 130 meV FWHM

T. Inami, S. Ishihara et. al., Phys. Rev. B 67, 045108 (2003).

Azimuthal angle dependence of the Orbital Excitation and the electronic band structure for LaMnO₃

放射光利用による電子自由度秩序の観測

