トピックス

放射光 X 線回折で見る電子軌道

鬼頭俊介

名古屋大学大学院工学研究科応用物理学専攻 〒464-8603 愛知県名古屋市千種区不老町

澤 博

名古屋大学大学院工学研究科応用物理学専攻 〒464-8603 愛知県名古屋市千種区不老町

要 旨 大型放射光施設 SPring-8 で得られる高強度・高分解能な単結晶 X 線回折データを用いてコア差フーリエ合成 (CDFS) 法による精密電子密度解析を行うことで,結晶中の価電子密度分布を高精度に観測できる。波動関数の二 乗に比例する電子密度の空間分布を観測することで,軌道状態の量子パラメータを直接決定することに成功した。 近年の放射光技術を最大限に活かす CDFS 法は,有機系・無機系によらず様々な結晶性物質の軌道状態の観測が可 能である。また,第一原理計算や量子化学計算に対する試金石となる情報も提供するであろう。

1. はじめに

X線を用いる数多くの実験手法の中でX線回折は最も 有名で多くの研究者に利用されている手法の一つである。 X線回折は原子の持つ電子の散乱現象に基づいており, 結晶内の原子の種類とその配列状態(結晶構造)を同定す ることができる。化学分析手法として広く認知されている X線回折法は,その簡便さから,物理学・化学・生物学 ・材料科学などの様々な分野で重宝されている。では,X 線回折は既に手法として確立し,今後の発展は期待できな いのであろうか?繰り返しになるが,X線回折は電子の 散乱現象であるため,原理的には価電子の空間分布状態, つまり,電子軌道の情報をも抽出できるはずである。X 線回折法において,電子軌道の観測を可能とする測定・解 析手法を確立することで,はじめて物性・機能を明らかに できる構造物性研究の域に達すると我々は考えている。

電子軌道とは実空間における電子の存在確率に対応し,物性を規定する最小単位である。従って,電子軌道の実空間分布状態の観測は物性を理解するために非常に有効な手段である。本稿では,近年の大型放射施設 SPring-8 で得られる高輝度・高エネルギーで高品質な放射光 X 線を用いることで成し遂げられた,電子軌道の観測結果について紹介したい。本稿の構成は以下の通りである。まず,第二章で X 線回折法の原理に立ち返り,電子密度を観測するための条件・問題点を整理する。それらを踏まえて,第三章では筆者らが新たに提案している電子密度解析手法について,最近の研究成果とともに紹介する。最後に,第四章では電子軌道の研究における放射光施設の重要性と今後の展開について述べる。

2. X線回折実験とその解析方法の現状

2.1 X 線回折実験

固体中の原子を観測する上で、X線回折は最も強力な プローブの一つである。物質にX線が入射すると、原子 周りの電子は入射X線と同じ振動数 ω で振動する。この 結果、各電子を中心として振動数 ω のX線が散乱され る。このとき、X線は物質中のあらゆる場所 $\mathbf{r} = (x, y, z)$ の電子密度 $\rho(\mathbf{r})$ に比例して散乱される。従って、結晶中 の $\rho(\mathbf{r})$ は、結晶面を表わすミラー指数h, k, lで規定され る散乱ベクトルKを用いて、結晶構造因子 $F_{obs}(K)$ をフー リエ係数とした次の無限フーリエ級数で記述される。

$$\rho(\mathbf{r}) = \frac{1}{V} \sum_{\mathbf{K}} F_{\text{obs}}(\mathbf{K}) e^{i\mathbf{K}\cdot\mathbf{r}}$$
(1)

ここで *V*はユニットセルの体積である。この逆フーリエ 変換の式から、精確な $\rho(\mathbf{r})$ を得るためには、フーリエ係 数である*F*_{obs}(*K*)を可能な限り多く、かつ、精度よく測定 することが要求される。なお、X線回折強度 *I*(*K*)と*F*_{obs} (*K*)には *I*(*K*) \propto |*F*_{obs}(*K*)|²の関係があり、実験から得ら れるのは位相の情報を失った|*F*_{obs}(*K*)|である。このとき、 *F*_{obs}(*K*) = |*F*_{obs}(*K*)|*P* = |*F*_{obs}(*K*)|*e*^{*i*\phi(*K*)} と与えられ、位相 項*P*の詳細については後述する。

(1)式より得られる電子密度分布の分解能(きめ細かさ) について考察する。分解能は測定で得られた回折角2 θ の 最大値からブラッグの法則で求まる面間隔 $d = \lambda/(2 \sin \theta)$ を使って評価することができる。なお、X線の回折角2 θ が大きくなるほど散乱ベクトルの絶対値 |**K**|は大きくな る。ここで、 λ は入射X線の波長であり、Å(オングスト ローム)オーダーの値である。面間隔dは晶系に依存す る格子定数から決まり, $|\sin \theta| \le 1$ であるから,実験的に $d \ge \lambda/2$ の範囲でしか測定できない。例えば,実験室 X 線 源としてよく用いられる Cu K_{α} 線 ($\lambda = 1.54$ Å) の場合, 観測可能な d の最小値 d_{\min} は $d_{\min} = \lambda/(2 \sin \theta_{\max}) = 0.77$ Å となる。簡単化すれば,この d_{\min} が再現できる実空間 の空間分解能を表わす。一方,近年の大型放射光施設を用 いることで,短波長 X 線 ($\lambda = 0.25 - 0.4$ Å) を利用するこ とができ,原理的には $d_{\min} = 0.12 - 0.2$ Å の分解能のデータ を測定可能である。後にも述べるように,原子軌道の異方 性を捉える際に,この空間分解能が非常に重要な指標とな る。さらに付け加えるなら,散乱角 2 θ の大きい指数の強 度が十分な統計精度で得られることも軌道電子の再構成に 重要な要素となる。

2.2 X線回折強度と電子密度分布

(1)式の逆フーリエ変換の式に着目すると,実験で得ら れる | *F*_{obs}(*K*) | から電子密度分布を計算できることが分か る。この(1)式を用いた場合に構造決定が可能かどうか を,ダイヤモンドを例に見てみる。

ダイヤモンドは C (炭素) 原子が 3 次元的な構造を形成 している。C は K 殻の 1s 軌道に 2 つの電子, L 殻の 2s, 2p 軌道にそれぞれ 2 つの電子を占有し,計 6 つの電子を 有している。一般的に,物性に寄与するのは最外殻の価電 子であり,ダイヤモンドの場合はそれぞれの C が有する 4 つの価電子が sp³ 混成軌道を形成することで,共有結合と いう非常に強固な結合状態をもつ。そのため,ダイヤモン ドは非常に高い硬度を示す。

先に述べたように, 短波長 X 線を用いれば0.2 Å 程度の 空間分解能で, 原子や結合電子を再構成できるはずである。

Fig. 1(a), 1(b)に放射光 X 線(λ=0.31036 Å)を用いた単 結晶ダイヤモンドの回折実験によって得られた電子密度解 析の結果を示す。明らかに全電子密度分布は大きく乱れて おり、共有結合に対応する価電子密度分布は確認できな い。これは(1)式が数学的に"無限"のフーリエ係数を要 求しているのに対して、実験的には"有限"の回折反射強 度しか観測できないことに起因するフーリエ合成の打ち切 りの影響である。このことはX線回折による構造解析が 提案された初期の段階からよく知られている。そこで、通 常は回折データを用いた最小二乗法による構造モデルの精 密化によって結晶構造の決定を行う。これを構造解析と称 している。構造モデルにはユニットセル内に球状の原子を 配置する。含まれる原子の数をNとし、各原子のユニッ トセル内での相対座標を $r_j = (x_j, y_j, z_j) (j = 1 \cdots N, 0 \le x_j, y_j, y_j)$ $z_i < 1$) とすると、計算結晶構造因子 $F_{cal}(\mathbf{K})$ は以下の(2) 式として表される。

$$F_{\rm cal}(\mathbf{K}) = \sum_{j} f_j(\mathbf{K}) T_j(\mathbf{K}) e^{-i\mathbf{K}\cdot\mathbf{r}_j}$$
(2)

ここで、 $f_i(\mathbf{K})$ はj番目の原子の原子散乱因子、 $T_i(\mathbf{K})$ は

Fig. 1 (Color online) (a), (b) Total electron density distribution of diamond calculated by the general inverse Fourier transform of diffraction intensity using Eq. (1). (c), (d) Valence electron density distribution of diamond calculated by the CDFS method using Eq. (3). (a) and (c) are surface plots. (b) and (d) are sectional view of the (4 4 0) planes.

j番目の原子変位パラメータ(通称:熱振動パラメータ) である。原子の持つ電子数の違いによって原子散乱因子が 異なることから,構造解析から元素種を決定する。従っ て,構造解析とは(2)式を用いた計算回折強度 $|F_{cal}(K)|^2$ と実際の測定強度 $|F_{obs}(K)|^2$ とが一致するように,N個 の原子の位置と原子変位パラメータを空間群と呼ばれる対 称性の制約のもとで最小二乗法によって精密化する問題に 帰着される。

この方法は極めて強力であり、物質の結晶構造の膨大な データベースが構築されている。ただし、この球状原子の 構造モデルを用いた構造解析では、回折強度の得られる範 囲が限られていたり、各回折点の強度の精度が低かったり した場合には構造モデルのパラメータの精度が上がらな い。更に、一般的には重元素と軽元素が混在する結晶構造 では、軽元素のパラメータの精密化の精度は低くなる。

通常の構造解析では、モデルに含まれない結合電子や軽 元素の情報を抽出するために差フーリエ合成を行う。この 手法の詳細はX線回折の教科書に記載されているため、 ここでは省略するが、以下ではこの差フーリエ合成法を発 展させた新しい解析手法について説明する。

Fig. 2に *C*の原子散乱因子 f_{carbon} を示す¹⁾。全電子(内 殻電子+価電子),内殻電子,価電子の寄与をそれぞれ黒 色,青色,橙色で示す。通常の結晶構造因子 $F_{cal}(\mathbf{K})$ の計 算には黒色の曲線で表される等方的な原子散乱因子を用い る。この原子散乱因子は, $\sin \theta/\lambda < 0.5 \text{ Å}^{-1}$ の低角領域に 主に値を持つ価電子と,高角の範囲で原子全体の散乱因子 とほぼ重なる内殻電子との和となっている。この振る舞い は,原子の持つ電子構造の空間分布状態を反映している。

Fig. 2 (Color online) Atomic scattering factor of carbon¹). Black, blue, and orange lines indicate the contribution of the total, core, and valence electrons, respectively.

単結晶 X 線回折実験の場合,回折データが測定可能な範囲は sin $\theta/\lambda < 2$ Å⁻¹ 程度であり,範囲外の回折データの 情報は得られない。このとき,内殻電子数に対して価電子 数の割合が多い軽元素の場合は,軌道混成によって結合に 寄与する価電子密度が X 線回折強度に比較的大きく寄与 する。すなわち,大きな異方性を持った電子雲の平均値と して原子位置を決めることになる。また,実験で得られる $|F_{obs}(\mathbf{K})|$ は位相の情報を含んでいないため,(1)式の電子 密度解析に必要な位相項 $P \approx F_{cal}(\mathbf{K})/|F_{cal}(\mathbf{K})|$ から求め ることも大きく影響する。これらの問題は特に軽元素を多 く含む分子性結晶の精密構造解析や電子密度解析を行う際 に注意する必要がある。

3. コア差フーリエ合成法を用いた電子密度 解析

3.1 ダイヤモンド

改めて Fig. 2 を見ると、価電子の情報をほとんど含まな い sin $\theta/\lambda > 0.5$ Å⁻¹の領域の回折データを用いて精密化す れば、十分信頼できる構造モデル $F_{cal}(K)$ を計算可能であ ることに気づく。このために必要な実験条件は、短波長の X 線を用いることだけである。この高角領域の精密化に よって得られた位相項 $P \approx P = F_{cal}(K) / |F_{cal}(K)|$ として 与えることで、(1)式の計算を行うことができる。しか し、既に述べたように(1)式を用いた従来型の電子密度解 析ではフーリエ合成の打ち切りの影響で、物性に直接的に 寄与するその軌道状態の観測を目指し、コア差フーリエ合成 (core differential Fourier synthesis; CDFS) 法による電子 密度解析手法を提案した²⁾。CDFS 法の計算法を(3)式に 示す。

$$\rho_{v}(\mathbf{r}) = \frac{1}{V} \sum_{\mathbf{K}} \left\{ \left[|F_{\text{obs}}(\mathbf{K})| P \right] \right\}$$

$$-\left|\sum_{j} f_{j}^{\text{core}}(\boldsymbol{K}) T_{j}(\boldsymbol{K}) e^{i\boldsymbol{K}\cdot\boldsymbol{r}_{j}}\right| P^{\text{core}} \right] e^{i\boldsymbol{K}\cdot\boldsymbol{r}} \right\} + \frac{n_{v}}{V}$$
(3)

ここで、 $f_{j}^{\text{orre}}(\mathbf{K})$ はj番目の原子の内殻電子の寄与のみの 原子散乱因子である(**Fig. 2**の青線に対応)。 P^{core} は P^{core} = $F_{\text{CGP}}(\mathbf{K})/|F_{\text{CGP}}(\mathbf{K})|$ で与えられる。また、 n_v はユニッ トセル内の価電子数に対応する。CDFS 法では実験的に得 られる全電子の情報をもつ $|F_{\text{obs}}(\mathbf{K})|$ から、計算した内殻 電子の寄与を差し引き、その値を逆フーリエ変換すること で、価電子密度の情報を効率よく抽出する。このとき、残 った f_{j}^{valuee} (**Fig. 2**の橙色の線)は sin $\theta/\lambda > 0.5$ Å で有限 の値を持たないため、(3)式の計算で得られる価電子密度 $\rho_v(\mathbf{r})$ には逆フーリエ変換の際に打ち切りの影響がほとん ど現れないはずである。

実際に, Fig. 1(c), 1(d)に CDFS 法で計算したダイヤモ ンドの価電子密度分布を示す³⁾。Fig. 1(a), 1(b) と比べると 一目瞭然で,非常に滑らかな電子密度分布が得られており, C-C間に共有結合に対応する電子密度がはっきりと見え る。Fig. 1(d) より C-C間のちょうど中点の位置の電子密度 の濃さは1.3 e/Å³であった。これは定性的に価電子密度の 形状を再現しているだけでなく,第一原理計算によって得 られた価電子密度分布⁴⁾と比較して定量的にその濃さをよ く再現していることが分かる。

CDFS 法を用いた電子密度解析によって、ダイヤモンド の共有結合、つまり、sp³ 混成軌道状態の直接観測に成功 したことから、この手法の仕組みとその信頼性は理解して いただけたと思う。しかし、ダイヤモンドは C のみから 構成されており、非常に対称性の高い単純な結晶構造をも つ。また、ダイヤモンドでは原子間に空間的に広がった価 電子密度分布を観測していたため、実はそれほど高い空間 分解能は必要としない。そこで、次に我々は空間分解能を さらに高めることで、原子上に局在する 3d 軌道に占有し た価電子の観測に挑戦した。

3.2 ペロブスカイト型酸化物 YTiO3

1970年代から現在に至るまで軌道観測実験の標準的な 物質として多角的に調べられているペロブスカイト型酸化 物 YTiO₃ を対象とした⁵⁾。モット絶縁体である YTiO₃に おいて,磁性を担う Ti³⁺ イオンは19個の電子を持ってい るが,その内18個の内殻電子は全体で等方的な分布状態 を形成し,物性にはほとんど寄与しない。この系の物性を 支配するのは Ti の 3d 軌道に占有されるたった1 個の価 電子であり,過去の実験や理論計算からは Fig. 3(c)のよう な軌道状態と蝶々型の価電子密度分布が予想される⁶⁻¹⁴⁾。 つまり,この物質は電子密度観測のための実験手法とし て,(i) 3d 軌道の観測に必要な空間分解能の検証,(ii) 重元素と軽元素からなる結晶の高精度な位相項 Pの抽 出,(iii) ユニットセル内の全電子数から注目する電子軌 道の情報(今回は Ti³⁺:3d¹電子)を抽出するのに必要な

Fig. 3 (Color online) (a) Crystal structure of YTiO₃ at 25 K. (b) Valence electron density distribution, which is calculated by the diffraction data in $0 \le \sin \theta / \lambda \le 2.0$ Å⁻¹, around Ti with internal coordinates (1/2, 1/2, 1/2) obtained from the CDFS analysis (isosurface level: 3.2e/Å³). (c) Schematic illustration of the Ti³⁺-3d¹ orbital-ordered state in YTiO₃ system and the typical valence electron density distribution of a t_{2g} electron.

測定強度のダイナミックレンジの検証を行うための良い標 準物質といえる。

実験は SPring-8の単結晶 X 線回折用ビームライン BL02B1 ビームラインで行い¹⁵⁾,検出器には10⁶ 以上のダ イナミックレンジを有する 2 次元イメージングプレート (IP)を使用した。X 線の波長は λ = 0.35769 Å で,解析 には (sin θ/λ)_{max} = 2.0 Å⁻¹(d_{min} = 0.25 Å)までの反射強 度を用いた。低温測定には He ガス吹付装置を使用し,25 K で行った。CDFS 法は逆フーリエ変換の式に基づいて いるため,構造解析で決定される原子座標 r_j ,原子変位パ ラメータ T_j ,位相項 P, P^{core} などの精度が電子密度解析の 精度に直接反映されることになる。

精密な構造パラメータを得るために、価電子の寄与が存 在しない高角領域の回折強度のみを用いて構造パラメータ の精密化を行った。この方法の詳細は文献16)を参照され たい。

これらの手続きを経て得られた CDFS 解析を行った結 果を Fig. 3(b)に示す。TiO₆ 八面体の中心に局在している Ti の価電子密度分布は,まさに量子力学の教科書に載っ ているような蝶々型の 3d 軌道の形状を反映していること が分かる。このように,量子力学的なモデルを一切仮定せ ずに,3d 軌道の波動関数に対応する価電子密度分布を抽 出することに成功した¹⁷⁾。この異方的な価電子密度分布 から 3d 軌道の量子パラメータの抽出を試みた。単純な $3d^1$ 軌道描像を仮定し,3 種類の t_{2g} 軌道 (d_{yz}, d_{zx}, d_{xy})の 線形結合を(4)式で示す。

$$\varphi(\mathbf{r}) = C_1 |yz\rangle + C_2 |zx\rangle + C_3 |xy\rangle$$
$$(|C_1|^2 + |C_2|^2 + |C_3|^2 = 1)$$
(4)

Fig. 4 (Color online) (a)-(c) Valence electron density distributions of the $(1 \ \overline{2} \ 1)$ plane on Ti with internal coordinates (1/2, 1/2, 1/2) in YTiO₃, which are calculated by the diffraction data in $0 \le \sin \theta / \lambda \le 1.0 \ \text{Å}^{-1}$, $0 \le \sin \theta / \lambda \le 1.5 \ \text{Å}^{-1}$, and $0 \le \sin \theta / \lambda \le 2.0 \ \text{Å}^{-1}$, respectively.

この式と価電子密度分布を用いて、(5)式で示す評価関数 が最小となる量子パラメータを計算すると、 C_1 =0.7902、 C_2 =0.6092、 C_3 =0.0668となった。

$$s = \frac{\sum_{r} |\rho(\mathbf{r}) - |\varphi(\mathbf{r})|^{2}|}{\sum_{r} |\rho(\mathbf{r})|}$$
(5)

この結果は過去の実験や理論計算の結果とよく一致してお り⁶⁻¹⁴⁾,価電子密度分布から直接的にTi-3d¹軌道の量子 パラメータを決定できることを示した。

ここで得られた回折データの空間分解能と価電子密度分 布の関係について強調したい。Fig. 4 に CDFS 解析に使用 する回折データの $(\sin \theta / \lambda)_{max}$ を変化させた際の価電子 密度分布(断面図)の変化を示す。このとき、CDFS 解析 に使用した構造モデルは全て同じである。 $(\sin \theta / \lambda)_{max} =$ 2.0 Å⁻¹の回折データを用いた Fig. 4(c) では 3d 軌道の異 方性がはっきりと観測されているが、 $(\sin \theta / \lambda)_{max} = 1.5$ Å⁻¹や $(\sin \theta / \lambda)_{max} = 1.0$ Å⁻¹の回折データを用いた Fig. 4 (a), 4(b)では分解能が足りないため 3d 軌道の異方性を正 しく抽出できていないことが分かる。例えば、実験室系の 特性 X 線 (Mo K_{α} : $\lambda = 0.71$ Å) と比較的高角領域の測定 が可能な2次元 IP 検出器を使用したX線回折装置でも, θ≅70°までしか測定できないため,得られる電子密度分布 の分解能は $(\sin \theta / \lambda)_{\text{max}} \approx 1.32 \text{ Å}^{-1}(d_{\min} \approx 0.38 \text{ Å})$ 程度と なる。従って、実験室系のX線回折実験では3d軌道の観 測は分解能の問題から原理的に不可能である。一般に、価 電子情報が低角の散乱強度に主に含まれていることから, 高角の強度情報を軽視しがちである。しかし、このような 高い空間分解能で価電子情報を抽出するためには、高角の 回折強度が必要であることが分かる。

また、YTiO₃は化学式あたり85個の電子を有する。X 線回折強度は電子数の二乗に比例するため、今回のように 1電子分の異方性を観測するには、最大の反射強度に対し て $1^2/85^2=1/7225\cong10^{-4}$ 程度の弱い反射強度を高いS/N比で観測する必要がある。従って、 10^6 までのダイナミッ クレンジが保証されている検出器が不可欠である。特に, 高角の回折強度は指数関数的に弱くなる。したがって, X 線回折強度を稼ぐためには,試料の体積を大きくするか, 入射 X 線の強度を上げる必要がある。精密解析をする上 で,試料内部における X 線吸収の影響を考慮すると試料 はなるべく等方的で小さい方が好ましい。さらに,補正が 難しい消衰効果などの軽減にも短波長 X 線が有効であ る。以上の理由から, CDFS 法による価電子密度解析のた めには,放射光施設で得られる短波長かつ大強度 X 線の 利用が不可欠であることがお分かり頂けるだろう。

ところで,量子力学の教科書にも書いてある通り,3d 軌道の中心部分は本来節(ノード)となっているため,電 子密度はゼロになるはずである。しかし,CDFS 解析で得 られた価電子密度分布をよく見てみると(Fig.4(c)),中 心部分にも比較的大きな電子密度が残っている。3d 軌道 の観測に成功した当初,我々はこの中心部分に存在する電 子密度の原因に悩まされた。しかし,3d 遷移金属を含む いくつかの物質について価電子密度分布を調べると,中心 部分で電子密度が存在しない系も確認された。そこで,多 角的な検証を行った結果,これは試料やデータ(特に,原 子散乱因子のデータの精度)の問題ではなく,本質的な実 験結果であると判断した。

Ti 原子の中心部分に存在する電子密度の原因を調べる ために、第一原理計算との比較を行った。詳細な計算条件 は文献17)を参考にして頂きたいが、局所密度近似とハー バード (LDA + U)法(U=4 eV)を採用した。計算で得られ たバンドギャップは0.78 eV であり、過去の光学伝導度測 定の結果¹⁸⁾と同程度である。Fig. 5(a)に Ti の 3d(t_{2g} , e_g), 4s, 4p 軌道の部分的な状態密度を示す。この時、縦軸のス ケールが異なることに注意して頂きたい。フェルミエネル ギー直下の t_{2g} 軌道に注目すると、確かに、 d_{yz} と d_{zx} 軌道 で構成される狭いバンド幅(0.62 eV)のアップスピンの状 態密度が存在していることが分かる。これは CDFS 解析 で観測された蝶々型の価電子密度分布に対応する。

一方,より深いエネルギー領域に注目すると,E = -7.0, -6.0 eV付近に比較的大きな4s軌道状態と小さな4p軌道状態がアップとダウンの両スピンの状態密度として存在する。これはTi-4s軌道とO-2s/2p軌道間の共有結合が無視できないことを明確に示唆する。つまり,Ti-4s軌道の電子はOサイトに完全に移動しておらず(中性のTiの価電子配置は $3d^24s^2$),Ti-4sとO-2s/2pの混成(結合性)軌道に電子が多少残っていると考えられる。このとき,Ti-4s軌道に占有する電子はTiイオンの中心位置に空間的に局在して存在すると考えられる。実際に,第一原理計算によって得られた波動関数から価電子密度分布を描くと,確かに,Tiイオンの中心部分に4s電子に対応した濃い電子密度が残っていることが分かった(Fig. 5(b))。この結果はCDFS解析の結果(Fig. 4(c))と驚くほどよく一致している。つまり,Tiイオンの軌道が周りの

Fig. 5 (Color online) (a) Density of states of the Ti-4s, Ti-4p and Ti-3d (t_{2g}, e_g) orbitals. The zero-energy refers to the highest occupied level. (b) Valence electron density distribution around Ti obtained from the DFT calculation, which corresponds to valence electrons occupying the orbitals below the Fermi level (E=0 eV). (c) Schematic illustration of the orbital state including the Ti-O hybridization.

配位子の軌道と混成し,分子軌道を形成していると考えら れる(Fig.5(c))。この結合性軌道に一部の電子が占有す ること自体は配位子場理論¹⁹⁾の観点と矛盾しない。しか し,混成軌道に占有された電子は,ダイヤモンドのように 結合する2つの原子間に広がって存在するわけではない ことが分かる。CDFS解析の結果は,混成軌道に占有され た価電子が実空間において3d軌道の節に存在するという 非自明な描像を明確に示すことに成功した。

3.3 $\alpha - D_2 I_3 (D = BEDT - TTF and BETS)$

電子軌道の観測例として,最後に,原子上に局在した 3d 軌道とは逆に,分子上に空間的に広がった分子軌道の 電子密度解析結果についても紹介させて頂く。

2次元有機伝導体である α -(BEDT-TTF)₂I₃は,初め てバルク結晶としてディラック電子状態が実現した物質で あり,そのディラックコーンは波数空間において異方的な 形状を有している²⁰⁾。このとき,ディラックコーンはフ ェルミ準位付近に存在しており,ディラック電子系特有の ゼロモードランダウ準位²¹⁾や,長距離(1/r)型の電子間 クーロン相互作用²²⁾が実験的に観測されている。しかし, α -(BEDT-TTF)₂I₃においてディラック電子系が実現す るのは高圧下(P>1.2 GPa)のみであり,常圧下では $T_{\rm MI}$ = 135 K において対称心の消失を伴う金属-絶縁体 (電荷秩序)転移を引き起こし^{23,24)},異なる基底状態へと 変化してしまう。

そこで我々は BEDT-TTF 分子の一部の硫黄(S)をセレン(Se) で置換することで(Fig. 6(a), 6(b)),正の化学 圧力が期待される α -(BETS)₂I₃に着目した。 α -(BETS)₂I₃は常圧下において約 T_{MI} =50Kで金属-絶縁体

Fig. 6 (Color online) (a), (b) Molecular structures of BEDT-TTF and BETS molecules, respectively. (c), (d) Valence electron density distribution of a BEDT-TTF molecule in α -(ET)₂I₃ at 30 K and a BETS molecule in α -(BETS)₂I₃ at 30 K, respectively, which are calculated by the XRD data in the limit $0 \text{ Å}^{-1} \le \sin \theta / \lambda \le 0.5 \text{ Å}^{-1}$. (e) Band dispersion of α -(BETS)₂I₃ is seen from two directions close to the Dirac cone on the $k = (k_x, k_y, 0)$ plane, where a pair of Dirac points are located at $k = (\pm 0.2958, \mp 0.3392, 0)$.

転移を示す²⁵⁾。しかし,核磁気共鳴の実験よりこの絶縁 体状態は対称性の低下を伴っていないことから²⁶⁾,常圧 下ディラック電子系の可能性が示唆されていた。我々は放 射光X線回折実験と第一原理計算を用いて精密な結晶・ 電子構造を調べた。

この結果, α -(BETS)₂I₃は転移前後で対称性が全く変 化しておらず,低温相でも対称心が存在することが分かっ た²⁷⁾。次に, α -(BEDT-TTF)₂I₃と α -(BETS)₂I₃の電子 状態の違いについて調べるために,CDFS法を用いた精密 電子密度解析を行った。Fig. 6(c), 6(d)に常圧下30 Kにお ける α -(BEDT-TTF)₂I₃内のBEDT-TTF分子と, α -(BETS)₂I₃内のBETS分子の価電子密度分布を示す。こ こで,C,S,Seの電子配置はそれぞれ[He]2s²2p²,[Ne] 3s²3p⁴, [Ar]4s²4p⁴を仮定し,それぞれの内殻電子の寄与 を差し引いた価電子密度分布が描画されている。

それぞれの分子の中心付近の4つの S/Se 原子周りに注 目すると、S と Se で価電子数が同じにも関わらず、電子 密度の濃さに違いがあることが分かる。一般的に、S の 3p軌道よりも Se の 4p軌道の方がより空間的に広がって いるため、周りの原子の軌道と混成を起こしやすい。つま り、CDFS 解析の結果は、この 3p軌道と 4p軌道の空間 的な広がりに対応する違いを反映していると考えられる。 実際、放射光 X 線回折実験により得られた構造パラメー タを用いて第一原理計算を行った結果、 α -(BETS) $_2I_3$ で は α -(BEDT-TTF)₂I₃ よりもバンド幅が広がっており, 正の圧力効果が生じていることが分かった。さらに, α -(BETS)₂I₃ ではディラックコーンがフェルミ準位付近に 存在しており,常圧下でディラック電子状態が実現してい ることが明らかになった(Fig. 6(e))²⁷⁾。先に述べた絶縁 化の起源やディラック電子状態については諸説あるもの の^{28,29)},スピン-軌道相互作用を考慮した計算からは α -(BETS)₂I₃ の基底状態が弱いトポロジカル絶縁体である ことも示唆される²⁷⁾。このように,この系は非常にユ ニークな電子状態を形成しているため,今後,さらなる研 究の進展が期待される。

3.4 CDFS 法の特徴,メリット,問題点

これまで,電子軌道の情報を抽出する実験手法は偏極中 性子回折³⁰⁾,共鳴X線散乱³¹⁾,非共鳴非弾性X線散 乱³²⁾,紫外線角度分解光電子分光法³³⁾,走査型トンネル 顕微鏡³⁴⁾などいくつか提案されているが,適用できる物 質群や得られる空間・運動量情報は限定的であり,仮定し た原子軌道モデルに基づく情報しか抽出できなかった。こ れに対して CDFS 法は,①原理的には対象物質の示す物 性とは独立に全ての元素に適用することができる,②量子 力学的・情報学的モデルを仮定することなく価電子密度分 布を抽出できるため,解析時のバイアスが最小限に抑えら れる,という特徴がある。

CDFS 法を行う際に重要なポイントは2つである。1つ 目は、いかに質の高い回折データを測定するかである。 CDFS 法は逆フーリエ変換の式に基づいているため、単結 晶の質やX線の状態が電子密度解析の結果に直接的に反 映する。これは当たり前のように聞こえるが、実験を行う 研究者としては非常に重要な要素である。特に、強度の弱 い高角領域の反射強度をいかに高精度(高 S/N 比)で測 定できるかにかかっている。一般的に粉末試料から得られ るX線回折データは単結晶に比べてS/N比が悪く,高角 領域の強度分離の精度が低い。我々は粉末X線回折デー タを用いた CDFS 解析を試みたが,価電子密度の正しい 異方性は抽出できなかった。なお、CDFS 解析が可能な X 線や回折計装置は既に SPring-8 の BL02B1 ビームライン において整備されており、もしこの手法を行いたい方は、 質の高い単結晶試料を用意して課題申請をして頂ければよ い。

2 つ目のポイントは、得られた全電子の寄与を含む回折 強度から、いかに精度よく内殻電子の寄与を差し引くかで ある。構造パラメータの精密化は既に述べたように、高角 領域の回折反射のみを用いて適切な手順で解析を行えばよ く、それほど難しくはない。しかし、ここで問題となるの は原子散乱因子 *f*, *f*^{ore}, *f*^{yalence}の精度である。原子散乱因 子は Hartree-Fock 法や Dirac-Fock 法によって計算され ているが、これらの値が実験的に十分検証されているとは 言い難い。特に、原子番号が大きい重元素では相対論的効 果が大きくなり,第一原理計算の立場からもその精度を評価することは難しいと言われている。もし今後,CDFS法を用いて5*d*や4f系などの重元素を扱いたい場合は(実際,5*d*,4f電子系には電子軌道の物理として興味深い物質が数多く存在する),第一原理計算などとの比較検討が不可欠である。これらは我々の現在進行形の課題である。

もう一点,この一連の研究で明らかとなった実験上重要 な事項について述べる。先に述べたように,物性・機能を 司るのは原子の持つ価電子である。外場応答などの電子状 態の変化を放射光X線回折で観測したという報告が,過 去に数多く発表されている。一方で,この応答が電子一格 子相互作用などの協力現象で強化されなければ,その変化 は価電子情報にのみ含まれることになる。したがって,価 電子密度観測が可能な測定を行わなければ,本質的な変化 を見ることは難しい。次の項で述べるが,この外場応答や 時間分解などの測定を行うためには,IPに代わる新しい 高速測定が可能な検出器が必要である。

4. 最近の進展, 将来展望

CDFS 解析を行うことで,価電子の分布状態を実空間に おいてモデルを仮定せず直接的に観測することができた。 これによって,物性を理解する上で既存の研究手法とは異 なるアプローチが可能となった。例えば,CDFS 解析で得 られる実空間における価電子密度は波動関数の二乗に対応 するため,第一原理計算や量子化学計算などに対しても非 常に有用かつ本質的な情報を提供できる。つまり,実験で 得られた価電子密度分布を再現するような波動関数を第一 原理計算などから決定することができれば,物質中の相互 作用の大きさや結合定数などを定量的に評価できる可能性 がある。これに関しては,スピンと軌道の自由度が結合す る3d電子系物質において既に興味深い実験・計算結果が 得られており,近いうちに改めて紹介させて頂きたい。

本稿で紹介した電子密度解析の結果は全て IP 検出器を 用いて得られたものである。強度積分型の IP 検出器は電 子密度解析が可能なダイナミックレンジを有しているもの の,強度の読み取り時間が長く(BL02B1 の IP では強度 の読み取りと消去で測定毎に約7分のデッドタイムが必 要),対称性が低い分子性結晶などを測定する場合には1 日以上の時間がかかってしまう。また,既に大面積の IP の製造は終了し,近い将来その供給が途絶えることと, SPring-8の BL02B1 ビームラインでも IP を用いた回折 計の導入からほぼ10年の時を経てメンテナンスの対応が 困難になってきた。

このような背景を踏まえて、2018年に BL02B1 ビーム ラインに IP に変わるハイブリッド型検出器である CdTe PILATUS 検出器が施設側で導入され、我々のグループは この立ち上げをパートナーユーザーとして行っている。 PILATUS 検出器では、IP と同程度の強度のダイナミッ クレンジが保証されつつ,積分型のIPに対して光子計数 型であることから検出エネルギー領域が選択可能となり, バックグラウンドを除去したS/N比の高い回折データを 得ることができる。また,強度の読み取り時間が0.95ミリ 秒で行えるため,高速データ読み取りの利点を生かした時 分割測定も可能である。様々な検証実験の結果,PILA-TUSでは適切に実験デザイン・データ処理を行うことで, IPに比べてS/N比が約7倍の回折データを,10~30分の 1の時間で測定できるようになった。実際に,対称性の高 い無機結晶であれば,30分程度の測定で3d電子軌道を観 測可能であることが分かってきた。このタイムスケール は,他の軌道観測実験と比較しても驚異的である。

ただし,光子計数型検出器であるがゆえに,PILATUS では"X線回折実験結果が放射光の電子バンチモードに 依存する"。具体的には,単位時間当たりにカウント可能 な閾値を超える多くの光が検出器に入射すると,強度の数 え落としが生じる。この問題は,特にSPring-8の非等間 隔バンチモードで顕著に現れる。我々の検証実験の結果, 現状では非等間隔モードで電子密度解析を行うのは非常に 困難であることが分かった。

5. 終わりに

本稿では我々が提案している放射光 X 線回折を用いた CDFS 法による電子密度解析手法とその活用例について説 明させて頂いた。この手法のコンセプトは非常にシンプル であり,読者の方々は,100年以上の歴史がある X 線回折 法の中でなぜ今更このような手法が提案されているのかと 感じているかもしれない。しかしながら,シンプルだから こそこの手法は非常に強力であり,データの質を直接的に 反映した解析を行うことで本質的な電子軌道の情報を抽出 できた。また,これらの成果は近年の放射光技術発展と回 折計の高精度な整備によって初めて成功したものである。 放射光施設 SPring-8 のポテンシャルを最大限引き出すこ とができるこの CDFS 法が,今後,様々な分野の研究に 活用され,その発展に貢献することを期待する。

本稿は、多くの方々との共同研究から得られた知見に基 づいて執筆されました。SPring-8 での放射光実験は全て 高輝度光科学研究センターの杉本邦久 博士,中村唯我 博 士の協力のもと行われました。本研究の共同研究者の獅子 堂達也 博士 (ウィスコンシン大学ミルウォーキー校),萬 條太駿 氏,片山尚幸 先生 (名古屋大),有馬孝尚 先生, 十倉好紀 先生 (東大/理研),田口康二郎 博士 (理研), 中村敏和 先生,横山利彦 先生 (分子研),内藤俊雄 先生 (愛媛大),開康一 先生 (福島県立医大),圓谷貴夫 博士 (熊本大) にこの場を借りて御礼申し上げます。また,本 研究に関して有益な議論を頂いた溝川貴司 先生 (早稲田 大),石原純夫 先生 (東北大),今田正俊 先生 (豊田理 研),白鳥紀一 先生に深く感謝いたします。本研究の一部 は,科学研究費補助金 (JP23244074, JP19J11697) によ り支援されました。

参考文献

- 1) Z. Su and P. Coppens: Acta Cryst. A53, 749 (1997).
- S. Kitou, T. Fujii, T. Kawamoto, N. Katayama, S. Maki, E. Nishibori, K. Sugimoto, M. Takata, T. Nakamura and H. Sawa: Phys. Rev. Lett. 119, 065701 (2017).
- S. Kitou, Y. Hosogi, R. Kitaura, T. Naito, T. Nakamura and H. Sawa: Crystals 10, 998 (2020).
- P. Pavone, K. Karch, O. Schütt, D. Strauch, W. Windl, P. Giannozzi and S. Baroni: Phys. Rev. B 48, 3156 (1993).
- 5) D. A. MacLean, H.-N. Ng and J. E. Greedan: J. Solid State Chem. **30**, 35 (1979).
- T. Mizokawa and A. Fujimori: Phys. Rev. B 54, 5368 (1996).
- 7) H. Sawada, N. Hamada and K. Terakura: Physica B 237, 46 (1997).
- M. Itoh, M. Tsuchiya, H. Tanaka and K. Motoya: J. Phys. Soc. Jpn. 68, 2783 (1999).
- J. Akimitsu, H. Ichikawa, N. Eguchi, T. Miyano, M. Nishi and K. Kakurai: J. Phys. Soc. Jpn. 70, 3475 (2001).
- 10) H. Nakao, Y. Wakabayashi, T. Kiyama, Y. Murakami, M. V. Zimmermann, J. P. Hill, D. Gibbs, S. Ishihara, Y. Taguchi and Y. Tokura: Phys. Rev. B 66, 184419 (2002).
- 11) M. Kubota, H. Nakao, Y. Murakami, Y. Taguchi, M. Iwama and Y. Tokura: Phys. Rev. B **70**, 245125 (2004).
- 12) M. Mochizuki and M. Imada: New J. Phys. 6, 154 (2004).
- 13) I. A. Kibalin, Z. Yan, A. B. Voufack, S. Gueddida, B. Gillon, A. Gukasov, F. Porcher, A. M. Bataille, F. Morini, N. Claiser, M. Souhassou, C. Lecomte, J.–M. Gillet, M. Ito, K. Suzuki, H. Sakurai, Y. Sakurai, C. M. Hoffmann and X. P. Wang: Phys. Rev. B **96**, 054426 (2017).
- 14) H. Voufack, I. Kibalin, Z. Yan, N. Claiser, S. Gueddida, B. Gillon, F. Porcher, A. Gukasov, K. Sugimoto, C. Lecomte, S. Dahaoui, J.-M. Gillet and M. Souhassou: IUCrJ 6, 884 (2019).
- 15) K. Sugimoto, H. Ohsumi, S. Aoyagi, E. Nishibori, C. Moriyoshi, Y. Kuroiwa, H. Sawa and M. Takata: AIP Conf. Proc. 1234, 887 (2010).
- 16) 橋爪大輔:日本結晶学会誌 56,313 (2014).
- S. Kitou, T. Manjo, N. Katayama, T. Shishidou, T. Arima, Y. Taguchi, Y. Tokura, T. Nakamura, T. Yokoyama, K.

Sugimoto and H. Sawa: Phys. Rev. Research 2, 033503 (2020).

- 18) T. Arima, Y. Tokura and J. B. Torrance: Phys. Rev. B 48, 17006 (1993).
- J. S. Griffith and L. E. Orgel: Quarterly Reviews, Chemical Society 11, 381 (1957).
- 20) S. Katayama, A. Kobayashi and Y. Suzumura: J. Phys. Soc. Jpn. 75, 054705 (2006).
- 21) N. Tajima, S. Sugawara, R. Kato and K. Kajita: Phys. Rev. Lett. **102**, 176403 (2009).
- 22) M. Hirata, K. Ishikawa, K. Miyagawa, M. Tamura, C. Berthier, D. Basko, A. Kobayashi, G. Matsuno and K. Kanoda: Nat. Commun. 7, 12666 (2016).
- K. Bender, K. Dietz, H. Endres, H. W. Helberg, I. Hennig, H. J. Keller, H. W. Schäfer and D. Schweitzer: Mol. Cryst. Liq. Cryst. 107, 45 (1984).
- 24) T. Kakiuchi, Y. Wakabayashi, H. Sawa, T. Takahashi and T. Nakamura: J. Phys. Soc. Jpn. 76, 113702 (2007).
- M. Inokuchi, H. Tajima, A. Kobayashi, T. Ohta, H. Kuroda, R. Kato, T. Naito and H. Kobayashi: Bull. Chem. Soc. Jpn. 68, 547 (1995).
- 26) K. Hiraki, S. Harada, K. Arai, Y. Takano, T. Takahashi, N. Tajima, R. Kato and T. Naito: J. Phys. Soc. Jpn. 80, 014715 (2011).
- 27) S. Kitou, T. Tsumuraya, H. Sawahata, F. Ishii, K. Hiraki, T. Nakamura, N. Katayama and H. Sawa: Phys. Rev. B 103, 035135 (2021).
- 28) T. Tsumuraya and Y. Suzumura: Eur. Phys. J. B 94, 17 (2021).
- 29) D. Ohki, K. Yoshimi and A. Kobayashi: Phys. Rev. B 102, 235116 (2020).
- 30) Y. Itoh and J. Akimitsu: J. Phys. Soc. Jpn. 40, 1333 (1976).
- 31) Y. Murakami, J. P. Hill, D. Gibbs, M. Blume, I. Koyama, M. Tanaka, H. Kawata, T. Arima, Y. Tokura, K. Hirota and Y. Endoh: Phys. Rev. Lett. 81, 582 (1998).
- 32) H. Yavas, M. Sundermann, K. Chen, A. Amorese, A. Severing, H. Gretarsson, M. W. Haverkort and L. H. Tjeng: Nat. Phys. 15, 559 (2019).
- 33) P. Puschnig, S. Berkebile, A. J. Fleming, G. Koller, K. Emtsev, T. Seyller, J. D. Riley, C. Ambrosch-Draxl, F. P. Netzer and M. G. Ramsey: Science **326**, 702 (2009).
- 34) H. Kim, Y. Yoshida, C.-C. Lee, T.-R. Chang, H.-T. Jeng, H. Lin, Y. Haga, Z. Fisk and Y. Hasegawa: Sci. Adv. 3, eaao0362 (2017).

鬼頭俊介

名古屋大学大学院工学研究科 博士研究員 (学振 PD)

E-mail: kitou.shunsuke@h.mbox.nagoyau.ac.jp

専門:構造物性 **[略歴]**

2020年名古屋大学大学院工学研究科博 土課程修了,博士(工学)。2020年4月から2021年3月まで現職。2021年4月より 理化学研究所創発物性科学研究センター 強相関量子構造研究チーム基礎科学特別 研究員。

著者紹介

澤博

名古屋大学大学院工学研究科 教授 E-mail: hiroshi.sawa@cc.nagoya-u.ac.jp 専門:構造物性 **[略歴]**

1990年 青山学院大学理工学部 博士課程 修了,博士(理学)。1989年 青山学院大 学理工学部助手。1991年 東京大学物性研 究所助手。1996年 千葉大学理学部物理学 科助教授。2001年 高エネルギー加速器研 究機構物質構造科学研究所助教授。2005 年 高エネルギー加速器研究機構物質構造 科学研究所教授。2008年より現職。

Electron orbitals observed by synchrotron radiation X-ray diffraction

Shunsuke KITOUDepartment of Applied Physics, Nagoya University, Nagoya 464-8603, JapanHiroshi SAWADepartment of Applied Physics, Nagoya University, Nagoya 464-8603, Japan

Abstract Valence electron density distribution in a crystal can be observed with high accuracy by performing electron density analysis by a core difference Fourier synthesis (CDFS) method using high-intensity and high-resolution single crystal X-ray diffraction data obtained at the synchrotron radiation facility SPring-8. By observing the spatial distribution of electron density proportional to the square of the wave function, we succeeded in directly determining the quantum parameters of the orbital state. The CDFS method, which makes the best use of recent synchrotron radiation technology, can observe the orbital state of various organic and inorganic crystalline materials. The CDFS analysis will provide a touchstone for a complete description of the first-principles and quantum chemistry calculations.