■第21回日本放射光学会奨励賞受賞研究報告

X線自由電子レーザーによる溶液環境コヒーレント回折イ メージング法の開発

木村隆志 (北海道大学電子科学研究所)

1. はじめに

生体試料や緩やかに結合したナノ構造などを,溶液環境 下において自然な状態のまま観察することは,試料本来の 構造を調べ,生物学や化学上の働きを理解する上で欠かす ことができない。しかし従来,X線顕微鏡や電子顕微鏡 といった高空間分解能観察が可能な顕微イメージング手法 では,一般的に化学固定や凍結固定といった試料処理が必 要であり,取得された試料像が本来の構造をどこまで保持 されているかについて,常に細心の注意を払う必要があっ た。また,X線や電子線といった高エネルギーの測定プ ローブによる構造損傷もこれまで回避することが困難な深 刻な問題であり,得られる試料像の実効的な空間分解能が 大きく制限されてきた¹⁻³⁾。

筆者らはこれまで、X線自由電子レーザー(X-ray Free-Electron Laser: XFEL)の特徴を利用した、新たな X線イメージング技術を開発することによって、放射線 損傷を回避しながら、溶液環境下における試料の10 nm に 迫る高空間分解能での可視化に成功してきた。パルス状コ ヒーレントX線溶液散乱法(Pulsed Coherent X-ray Solution Scattering: PCXSS)と名付けて開発を行ってい る手法の概略を Fig.1に示す⁴⁾。本手法の大きな特徴とし ては、XFELのシングルパルスを用いたコヒーレント回 折イメージングを行う点と、真空中で溶液試料からコヒー レント回折パターンを効率よく計測可能な独自開発の溶液 試料ホルダを利用する点が挙げられる。

兵庫県播磨の XFEL 施設 SACLA (SPring-8 Angstrom Compact free-electron LAser)から発振される X 線レー ザーはパルス幅が10フェムト秒以下と、クーロン爆発に よる放射線損傷が生じるとされる時間スケールよりも短 い⁵⁾。さらに SACLA のシングルパルスには10¹¹ photons/ pulse 程度の強度があるため、適切に集光された X線を利 用することによって,数百nm サイズ以下の試料からシン グルパルスの照射でコヒーレント回折パターンを取得する ことが可能である。そのため、X線レーザーのシングル パルスで計測されたコヒーレント回折パターンを解析する ことによって、放射線損傷前の試料構造を求めることが可 能になる。こうした原理に基づく計測を "Diffract before destruct (破壊の前の回折)"といい, SACLA や米国の LCLS (Linac Coherent Light Source) において、イメー ジング実験のみならず結晶構造解析などへも応用がなされ ている6,7)。

回折パターンから試料像を求めるための手法としては, 計算機上での反復的な位相回復計算によって試料像を再構 成するコヒーレント回折イメージング法8-10)を利用してい る。コヒーレント回折イメージング法の利点は、試料像を 得るために結像光学素子を利用しないため、加工技術の精 度に依存しない高空間分解能なイメージングを実現できる 点にある。XFEL とコヒーレント回折イメージングを組 み合せた例としては、ウイルス粒子11)や金属ナノ粒 子12),葉緑体13)の計測といった例が報告されている。し かし、コヒーレント回折イメージング法は、寄生散乱を抑 制するために試料を真空中に設置した状態で計測が行われ るため、これまで試料周囲の環境が厳しく制約されてき た。筆者らは、コヒーレント回折イメージング法を X線 自由電子レーザーによる溶液中試料の計測に適用するため に、マイクロ液体封入アレイと名付けた溶液試料ホルダの 開発、検証を行ってきた。本稿では、このマイクロ液体封 入アレイと、それを用いての SACLA でのコヒーレント 回折イメージング実験について紹介を行う。

マイクロ液体封入アレイを利用した溶液試料の導入

マイクロ液体封入アレイ外観の写真を Fig. 2(a)に示す。 個別の溶液セル内部では、二枚の窒化ケイ素薄膜の間に 2 µm 厚以下の溶液層を、真空から隔離して保持できるよう になっている。XFEL での実験では、集光したシングル パルスの X 線レーザー照射によって、試料のみならず溶 液セルの構造も同時に破壊されてしまうため、独立した

Fig. 2 (Color onlne) (a) Micro-liquid enclosure array chip and
 (b) X-ray exposure window. We enclosed fluorescently-stained bacteria to confirm that MLEA chips can keep live bacteria during XFEL experiment.

500個以上の溶液セルを,12 mm サイズの1枚のシリコン チップ上に集積している。作製にはフォトリソグラフィや ドライ・ウェットエッチングといった,一般的な半導体プ ロセス技術を利用している。これまで実験では主に4.0~ 5.5 keV の SACLA で利用可能な低光子エネルギーの領域 を利用しているが,窒化ケイ素薄膜・溶液層を含めた全体 の透過率として9割以上を確保している。

窒化ケイ素薄膜のX線透過窓部は、およそ20μm×20 μmサイズの矩形の形状になっている。Fig.2(b)に、バク テリアを封入したX線透過窓部の光学顕微鏡像を示す。 マイクロ液体封入アレイを真空中に一時間以上放置して も、内部の溶液環境は維持され、封入されたバクテリアも 生存していることを確認している。溶液試料の封入は実験 時にビームラインの側室でその場で行っており、周囲環境 からのコンタミネーションを防ぐためにクリーンベンチを 利用し、ISO クラス1程度の清浄な空間を確保した上で 作業を行っている。

またこの20µm角のX線透過窓部の形状は,試料上流 からの寄生散乱を取り除くガードスリットの役割を効果的 に果たしている。コヒーレント回折イメージングでは,取 得したコヒーレント回折パターンのノイズが,位相回復計 算によって求められる試料像に直接影響を与えるため,寄 生散乱を低減できる本効果は極めて重要である。試料ホル ダ自身も寄生散乱の発生源になりうるが,二枚の窒化ケイ 素薄膜に囲まれたX線照射部は,溶液層も含め平板状の 構造をしているため,入射X線には一様な位相シフトは 発生するものの,理想的には内部に存在する試料以外から の寄生散乱は生じない。XFEL での結晶構造解析では液 体ジェットによる試料導入も行われている¹⁴⁾が,円筒状 の形状をもつ液体ジェット自体からの強い寄生散乱が低角 散乱領域に生じるため,コヒーレント回折イメージング実 験用途に利用するのは現実には多くの困難が伴う。

シングルパルス XFEL による溶液中試料コヒーレ ント回折イメージング

筆者らは上記のマイクロ液体封入アレイを使用したコ ヒーレント回折イメージング実験を SACLA の BL3 を利 用して行った。実験には, SACLA 供用の汎用イメージン

Fig. 3 (Color onlne) (a) Coherent diffraction pattern of a live *M. lacticum* cell in saline solution, measured by single-shot illumination by a femtosecond XFEL pulse. (b) Reconstructed image of (a).

グ用チャンバーである MAXIC (Multiple Application Xray Imaging Chamber)¹⁵⁾を利用しており, チャンバー内 部に設置したマイクロ液体封入アレイ中の試料に対して, 上流の全反射 X 線ミラー¹⁶⁾によっておよそ1.5 µm に集光 した XFEL を照射している。MAXIC 中には二段のシリ コンブレード四象限スリットが設置されており,上述の MLEA の矩形開口構造に加えて,上流光学系からの寄生 散乱を除去するために使用している。コヒーレント回折パ ターンの計測には,SACLA で独自に開発されている MPCCD (MultiPort Charge-Coupled Device)¹⁷⁾を利用し ている。MPCCD はタンデムに配置しており,回折パ ターンの高角領域と低角領域を異なる配置で検出できるよ うにしている。

筆者らはまず, Microbacterium lacticum という乳製品中 に存在する微生細菌の XFEL イメージングを試みた⁴⁾。本 試料は細菌の中でもサブマイクロメートルと微小なサイズ を持つため,通常の光学顕微鏡による観察は困難であり細 胞生物学的な知見はこれまでほとんど得られていなかっ た。本試料の研究に関しては,共和化工株式会社の環境微 生物学研究所の大島泰郎所長らと共同で行っている。生理 食塩水中の M. lacticum に XFEL をシングルパルス照射 し,計測したコヒーレント回折パターンを Fig. 3(a)に示 す。回折パターンに斜めの一方向に強く伸びた干渉縞が見 られるが,これは棒状の杆菌である M. lacticum の幅方向 の構造に起因するパターンであると推定される。干渉縞の 縞間隔から, M. lacticum がおよそ194 nm の幅を持つこと が導かれるが、この結果は電子顕微鏡で観察されている *M. lacticum*の形状と良く一致している。またコヒーレン ト回折パターンから、反復的な位相回復計算によって求め られた再構成試料像を Fig. 3(b)に示す。再構成試料像は典 型的な *M. lacticum*の形状サイズとよく一致すると共に、 内部に一様でない高イメージ強度領域が観察されているこ とが分かる。コヒーレント回折イメージングでは、X線 散乱能の高い領域が高イメージ強度領域として再構成され るため、この構造は生体内で比較的高い電子密度を持つ分 子である DNA が偏在する領域ではないかと推定される。 切片化された試料を透過型電子顕微鏡により観察した結果 からも、内部に核様体と思われる同様の構造が存在するこ とが確認されている。

また非生物試料への応用として、ドラッグデリバリーな どへの応用が検討されている金ナノ粒子の自己組織化集合 体¹⁸⁾の計測も試みている。集合体は,直径15 nm と30 nm の二種類の金ナノ粒子表面に、グルコース末端を持つフッ 素化オリゴエチレングリコールのリガンドを修飾すること によって,溶媒中で200 nm サイズに凝集して自己組織化 したものである。一般的な電子顕微鏡では溶液中の集合体 を観察することは困難であり、また試料を乾燥させて観察 した場合には、乾燥過程で試料構造が変化する懸念があっ た。本試料の評価は、北海道大学電子科学研究所の居城邦 治教授,新倉謙一准教授らと共同で行っている。SACLA でシングルショット計測したコヒーレント回折パターンを Fig. 4(a)に, 試料の再構成像を Fig. 4(b)に示す。位相回復 伝達関数¹⁹⁾による再構成像の空間分解能評価では13 nm 程度が示唆され、実際に再構成試料像中でも15 nm の金ナ ノ粒子を個別に識別することが可能である。さらに再構成 試料像では集合体の外側に15 nm 金ナノ粒子,内側に30 nm 金ナノ粒子が偏在する様子がはっきりと捉えられてお り、二層構造の特殊な自己組織化を行っていることを溶液 中で直接観察することに成功した。

4. おわりに

本稿では、マイクロ液体封入アレイを利用した XFEL シングルパルスによるコヒーレント回折イメージング実験 について紹介を行い、具体的な計測例として生理食塩水中 の生細菌と自己組織化ナノ粒子集合体の計測例を示した。 本手法は、溶液中に存在する試料をそのまま高空間分解能 観察することが可能な手段として、他のイメージング手法 にない優れた特徴を持っており、今後生物学や材料科学の 発展に大きく寄与していけるものと期待している。また現 在さらなる高空間分解能化を目指して、XFELの集光強 度をより高めることが可能な実験装置の開発を、理化学研 究所や高輝度光科学研究センターと共同で進めている。現 状試料サイズは主にサブナノメートルサイズのものを計測 しているが、新装置を利用することによって数十nm 程度 の試料を観察することが可能になり、将来的には生体超分

Fig. 4 (Color onlne) (a) Experimental coherent diffraction pattern of a self-assembly of a mixture of 15-nm and 30-nm gold nanoparticles in water-contained dioxane solution. (b) Reconstructed image of the assembly.

子複合体などのイメージングが実現可能になると考えている。

またこの他,溶液中における観察が興味深い対象として, 試料の反応に伴うダイナミクスのその場計測に取り組むこ とも考えている。XFELによる計測では,上述したよう にシングルパルスの照射で試料が破壊されてしまうため, 同一試料の時間発展を継続して観察を行うことは困難であ る。しかし何らかの刺激をトリガーとして試料の状態を同 期することができれば,擬似的に試料の時間発展を計測す ることが可能になる。筆者らは現在,光をトリガーとする ポンプ・プローブ実験手法やマイクロ流路型の溶液試料ホ ルダの開発にも取り組んでおり,例えば複数の溶液を混合 した際に生じるナノ集合体構造の形成過程といった,より 興味深い対象をその場イメージングすることによって解明 していきたいと考えている。

謝辞

本稿で紹介させていただいた研究は,非常に多くの方々 との共同研究によって遂行されたものです。中でも北海道 大学の西野吉則教授,台湾中央研究院の別所義隆客座教 授,高輝度光科学研究センターの城地保昌チームリーダー には,研究の立ち上げ当初から多大なご指導をいただきま したことを,ここに深く感謝いたします。また,実験を遂 行する上で様々にご助言ご助力をいただいた SACLA/ SPring-8の関係者の方々,特に理化学研究所放射光科学 総合研究センターの石川哲也センター長,矢橋牧名グルー プディレクター,高輝度光科学研究センターの登野健介 チームリーダー,試料の作製・評価する上で共和化工株式 会社環境微生物学研究所の大島泰郎所長,森屋利幸博士, 北海道大学電子科学研究所の居城邦治教授,新倉謙一准教 授をはじめとする多くの方々に心より御礼を申し上げま す。本研究は JSPS 科学研究費補助金(16H05989)など の支援を受けて実施しています。

参考文献

- 1) R. Henderson: Q. Rev. Biophys. 28, 171 (1995).
- 2) J. Kirz, C. Jacobsen and M. Howells: Q. Rev. Biophys. 28, 33 (1995).
- M. R. Howells *et al.*: J. Electron. Spectrosc. Relat. Phenom. 170, 4 (2009).
- 4) T. Kimura et al.: Nat. Commun. 5, 3052 (2014).
- 5) R. Neutze, R. Wouts, D. van der Spoel, E. Weckert and J. Hajdu: Nature **406**, 752 (2000).
- 6) K. Hirata et al.: Nat. Methods. 2962 (2014).
- 7) S. Boutet et al.: Science. 337, 362 (2012).
- 8) J. Miao et al.: Nature 400, 342 (1999).
- 9) Y. Takahashi et al.: Phys. Rev. B 82, 214102 (2010).
- 10) Y. Nishino et al.: Phys. Rev. Lett. 102, 018101 (2009).
- 11) M. M. Seibert *et al.*: Nature **470**, 78 (2011).
- 12) Y. Takahashi et al.: Nano Lett. 13, 6028 (2013).
- 13) M. Nakasako et al.: Rev. Sci. Instrum. 84, 093705 (2013).

- 14) H. N. Chapman *et al.*: Nature **470**, 73 (2011).
- 15) C. Song et al.: J. Appl. Cryst. 47, 188 (2013).
- 16) H. Yumoto et al.: Nat. Photon. 7, 43 (2013).
- 17) T. Kameshima et al.: Rev. Sci. Instrum. 85, 033110 (2014).
- 18) J. Wei et al.: J. Am. Chem. Soc. 138, 3274 (2016).
- 19) H. N. Chapman et al.: J. Opt. Soc. Am. A 23, 1179 (2006).

● 著 者 紹 介 ● 木村隆志

北海道大学電子科学研究所助教

E – mail: Takashi.kimura @ es.hokudai. ac.jp

専門:X線光学,X線イメージング,超 精密加工

2011年大阪大学大学院工学研究科博士 後期課程修了,博士(工学)取得。同年 より北海道大学電子科学研究所コヒーレ ント光研究分野助教。