特別企画 🧧 検出器シリーズ(3)

エネルギーを測る | 一半導体検出器(高純度ゲルマニウム検出器・ シリコンドリフト検出器)—

伊藤真義 鮒高輝度光科学研究センター 〒679-5198 兵庫県佐用郡佐用町光都 1-1-1 E-mail: mito@spring8.or.jp
 谷田 肇 鮒高輝度光科学研究センター 〒679-5198 兵庫県佐用郡佐用町光都 1-1-1 E-mail: tanida@spring8.or.jp

1. はじめに

半導体検出器は,SSD (Solid State Detector)と呼ば れ,放射線を電気的なパルス信号に変換し計数するパルス 型検出器です。発生したパルスの波高は入射した放射線の エネルギーに比例するので,X線エネルギーを測定する 検出器として広く使われ,多くの放射線計測の教科書に解 説があります¹⁾。ほとんどの硬X線ビームラインには半導 体検出器があるのではないでしょうか。

放射光実験においてX線の光子エネルギーを測定する 主な方法としては,他にも結晶分光法があります。そのエ ネルギー分解能はΔE/E<10⁻³であり,放射光の圧倒的 な強度は測定効率の低さをカバーすることができます。放 射光実験での最も重要なパラメーターである入射X線の エネルギーも,較正されたモノクロメーターの回折角から 求めるのが一般的です。では,半導体検出器の利点は何で しょうか? SSDの利点は,検出効率が高く,比較的高 計数率(<10³~10⁶ cps)で,各元素の特性X線を分離で きる程度のエネルギー分解能で広いエネルギー範囲(>1 keV)を一度に測定でき,比較的小型で取り扱いが簡便な ことです。

蛍光X線分析のように広いエネルギー領域のエネル ギースペクトルの高計数率の測定が必要な場合や、コンプ トン散乱実験のように高い統計精度でのエネルギープロフ ァイルの取得が必要な実験においても強力な検出器です。 X線回折実験における検出器として使用すれば回折X線 のエネルギーのみを、蛍光XAFS実験では測定対象元素 の蛍光X線のみを選別した測定を可能としS/Nの高い実 験が可能です。試料に対するビームの位置を確認するため に試料や試料ホルダーからの蛍光X線を確認したり、実 験中のモニターとして使用したりと、便利な検出器です。

今回は、「回折・散乱した硬 X 線のエネルギー測定」を 念頭に解説していきます。2,3章では半導体検出器の動作 原理と特性を、5章ではエネルギースペクトルの測定、6 章では蛍光 XAFS 測定や X 線回折実験での使用法である エネルギー選別した計数について解説します。なお,放射 光実験の場合,高エネルギーといっても100 keV 程度であ り,一般に放射線計測では低エネルギーとされている領域 ですが,この解説ではシリコンの吸収係数が減少する20 ~30 keV を境として,それ以下を低エネルギー,それ以 上を高エネルギーと呼ぶことにします。

2. 半導体検出器の動作原理と特性

2.1 動作の原理

半導体検出器は,X線を電気的なパルス信号に変換し 計測します。その過程は次のようになります。

- X線が半導体結晶内にて光電吸収やコンプトン散 乱を起こすことにより、二次電子や散乱 X線を生成 (散乱した X線は1を繰り返す)
- 2) 生成された電子は、電離作用によって多数の電子 正孔対を生成
 (高いエネルギーをもつ電子は2を繰り返す)
 (特性 X 線や制動放射を発生させた場合は1へ)
- 電子・正孔は、結晶にかけられた電場によって電 極へ移動し、パルスシグナルを発生する

ー対の電子正孔対を生成するのに必要な平均エネルギーは ε 値¹ と呼ばれ、ゲルマニウムでは2.96 eV です。エネル ギーEを持つX線は、E/ ε 個の電子正孔対を生成し、 1.602×10⁻¹⁹ E/ ε (C)の電荷信号を生じさせます。この電 荷信号を波高分析することでX線のエネルギー測定が可 能になります。

動作原理的は前号で紹介されたフォトダイオードと同じ です(前号2.1)。異なる点は,光子数測定のための検出器 では,多数の光子によって生成された電気シグナルの積分

¹ ガス検出器のW値に相当。Ge: 2.96 eV, Si: 3.76 eV, CdTe: 4.27 eV, (W値) He: 41.3 eV, Ar: 26.4 eV, Air: 34.0 eV

を電流として計測するのに対し,エネルギー計測用の検出 器では,一つの光子が生成したパルスシグナルを個々に計 測する点にあります。前号では PIN フォトダイオードを フォトンフラックス測定用として紹介していますが,同じ く PIN フォトダイオードを用いたエネルギー計測用検出 器もあります。

2.2 エネルギー分解能

検出器のエネルギー分解能は、信号のピークの半値全幅 (FWHM)として定義されます。この幅は、電子正孔対生 成の統計誤差(σ_s)、電子雑音(σ_n)、電荷収集のばらつき (σ_c)、温度変化によるばらつき(σ_d)などが原因であり、

$$(FWHM)^2 = \sigma_s^2 + \sigma_n^2 + \sigma_c^2 + \sigma_d^2$$
(1)

と表せます1)。

電子正孔対の生成数は統計的誤差(σ_s)をもちます。エ ネルギーEを持つX線は、 E/ε 個の電子正孔対を生成 し、このときの σ_s は、

$$\sigma_{\rm s} = 2.355 \sqrt{F \cdot \varepsilon \cdot E} \tag{2}$$

となります。 ε 値の小さい半導体のほうがより多くの電子 正孔対を生成できるので、統計的誤差が減少しエネルギー 分解能が向上します。FはFano factor²といわれる調整係 数で、半導体検出器の場合0.1程度³であり、2.355は標準 偏差をFWHMに変換する係数です。電子雑音(σ_n)は 結晶表面などにおける漏洩電流などに起因し、検出器の静 電容量とともに増大します。一般に素子の面積が小さいほ うが、静電容量が小さくなるのでエネルギー分解能は向上 します。結晶内での電荷収集のばらつき(σ_c)は、結晶内 における電荷の生成位置によって異なるもので、印加電 E、結晶内の不純物や欠陥などに影響されます。温度変化 によるばらつき(σ_d)は、素子の温度変化による ε 値の変 化や、電子回路系の温度依存性などから生じます。 $\sigma_n, \sigma_c,$ σ_d がエネルギーに依存しないとすると、エネルギー分解 能は、以下の関係を満たします。

$$(FWHM)^2 = a + b \bullet E \tag{3}$$

ここで a は個々の検出器に固有の, b は半導体元素種に固 有の定数です。

Fig. 1 (a) Si(Li)-SSD と(b) Ge-SSD の検出効率²⁾

2.3 検出効率

検出効率は、Fig.1に示すように、低エネルギー側では X線の検出器入射窓や半導体素子の不感部での吸収のた めに減少し、高エネルギー側ではX線が素子を透過する ため減少します。入射窓には、多くの場合ベリリウムが使 用されています。有機膜の窓や、窓なしで真空チャンバー 内に直接設置するタイプもあります。高エネルギー側で は、半導体素子の原子番号Zが大きく、サイズが大きい ほうが検出効率は向上します。Siでは20 keV、Geでは80 keV以上で検出効率の低下が顕著になります。また、素 子を構成する元素の吸収端では一部がエスケープピーク (2.4参照)となるためにピーク効率の変化が現れます。 Ge ではK吸収端である11.1 keV において約20%の全吸 収ピーク効率の低下が現れます。実際の検出効率曲線は、 X線入射の方向や位置によっても変化します。

2.4 エネルギースペクトル

エネルギー E の X 線が検出器に入射したときに観測さ れるエネルギースペクトルは, E にのみピークが形成され るのではなく,実際には複雑なスペクトルになります。入 射した X 線のエネルギーが全て結晶内に吸収されずにそ の一部が検出器外に放出されたり,電子回路系の応答によ る影響を受けたりするからです。このエネルギースペクト

² 半導体検出器の個々の電離過程は独立な統計事象ではなく電子 正孔対の生成数はポアソン分布に従いませんので、このような 調整計数が必要となります。電離の事象がポアソン分布に従う 場合、F=1となり、シンチレーション検出器などがその例で す。

³ 理論,実験の多くの報告がありますが,F値は0.05~0.2程度で 一致しておらず,正確な値はまだ分かっていません。

Fig. 2 半導体検出器のエネルギースペクトルの模式図

ルを模式的に表すと **Fig. 2**のようになります。以下で、それぞれのピークについて解説します。

2.4.1 全吸収ピーク

多くの場合,二次的に生成された電子やX線は,すぐ にその付近で吸収され全てのエネルギーを半導体素子に与 えます。検出器は入射したX線のエネルギーに比例する パルス波高を観測し,エネルギースペクトルには全吸収 ピーク(光電ピークとも呼ばれる)を生成します。スペク トルの解析では主としてこのピークを扱います。

2.4.2 エスケープピーク

半導体素子に入射した X 線が光電吸収されると,空孔 を埋める際にオージェ電子か蛍光 X 線を放出します。こ のとき発生した蛍光 X 線が検出器の外に散逸してしまう 場合,検出器が観測するエネルギーは入射エネルギー E から蛍光 X 線のエネルギー E_x を差し引いたものとなり, $E-E_x$ の位置にピークを形成します。このピークをエス ケープピークと呼びます。Fig. 2 には一本のエスケープ ピークしか描いていませんが,実際には $K_{al,2}$, K_{β} , L など 素子を構成する元素の複数の蛍光 X 線に対応するエス ケープピークが現れます。

エスケープピークの大きさは検出する X 線のエネル ギーに依存します。半導体素子の K 吸収端の直上のエネ ルギーでは、光電吸収断面積が大きく光電吸収が素子の表 面付近で起きやすくなるために、エスケープピークも大き くなります。高エネルギーになると素子内部での吸収やコ ンプトン散乱による吸収が多くなるので、エスケープピー クは目立たなくなります。ゲルマニウム検出器では、シリ コン検出器に比べエスケープピークが顕著に現れます。シ リコンより蛍光収率が高い、光電吸収断面積が大きい、入 射 X 線の平均透過距離が短い、蛍光 X 線エネルギーが高 いためです。

2.4.3 コンプトン連続

素子に入射した X 線がコンプトン散乱し,散乱 X 線が 散逸した場合,低エネルギー領域になだらかなピークを形 成します。これをコンプトン連続と呼びます。コンプトン 散乱では,X線はエネルギーの一部を電子に与え反跳さ せ,非弾性散乱します。反跳電子の受け取るエネルギー は,前方散乱(散乱角0度)の場合0となり,後方散乱 (散乱角180度)の場合に

$$Ee_{\max} = E - E / (1 + 2E/mc^2)$$
 (4)

と最大になります。検出器中でX線はあらゆる方向に散 乱しますので0~*Ee*max までの連続したエネルギーが電子 に与えられます。コンプトン散乱X線が検出器外へ散逸 すると、電子に与えられたエネルギーのみを検出器が計測 するので図に示したような連続分布が低エネルギー側に現 れるわけです。式(4)は静止した電子との散乱によるもの ですが、実際には電子は運動していますので、ドップラー 効果により散乱X線や反跳電子のエネルギー分布はひろ がります。このため*Ee*maxにおいてもコンプトン連続のプ ロファイルは急なエッジではなく、なだらかに減少します。

コンプトン連続は、低エネルギーX線の測定ではほと んど観測されませんが、高エネルギーX線の測定では現 れます。これは、コンプトン散乱断面積が大きくなり、ま た、コンプトン散乱X線のエネルギーも高くなるためで す。検出器素子が薄い場合には更に顕著になります。

2.4.4 サムピーク

2 つ以上のX線がほぼ同時に検出器に入射した場合, 検出器はそれを分離できずにひとつのX線から発生した ものとして計測してしまいます。スペクトルには同時にそ れらのX線エネルギーの和に相当する位置にピークを形 成します。これをサムピーク,もしくはパイルアップと呼 びます。サムピークは2Eだけでなく,エスケープやコン プトン連続を経由した後のエネルギーの和になりますの で、多くのピークが形成されます。

サムピークは入射フォトン数の自乗に比例して発生しま す。サムピークが観測される状態では、検出器の数え落し が発生しています。定量解析を行うときは補正が必要です (6.2参照)。

2.4.5 その他

検出器素子の周りには、窓材、電極、コールドヘッド、 真空容器等の構造物があります。これらから散乱された X線が計測される場合があります(Fig. 2 中 back scattering など)。特に、高エネルギーのX線を低エネルギー用 の検出器で計測する場合には、入射X線が素子を通り抜 ける確率が大きいので注意が必要です。

以上の現象は、複合的に起こります。例えば、光電吸収 で蛍光X線が逃げ、さらに光電子が特性X線を励起しそ れも逃げた場合、E-2E_xにピークが現れます。また、増 幅器など計測回路の設定が適正でない場合や、電気的なノ イズを拾っている場合にもおかしなピークが現れます。プ ロファイルの解析では、検出器、測定回路系の設定を正し く行った上で,更に検出器内の振る舞いを考慮することが 必要です。

3. 半導体検出器の構造と選定

化合物半導体を含め多種の半導体が存在しますが、半導体検出器の素子として実用化され入手が容易なものは、 Si, Ge, CdTe, HgI₂など数種類に絞られます。ここでは高純度ゲルマニウム検出器と、シリコンドリフト検出器について説明します。

3.1 高純度ゲルマニウム検出器 HPGe-SSD^{1,3)}

ゲルマニウムは他の半導体に比べバンドギャップが狭い ため、Ge-SSD は他の半導体検出器よりも高いエネルギー 分解能をもちます。反面、そのバンドギャップの狭さから 室温では熱励起による雑音が多く発生するので、冷却を必 要とします。

検出器素子の p+電極はホウ素イオン注入にて作製され ており、電極の厚さは~0.3 µm です。他方、n+電極はリ チウムの拡散により作製され、厚さは0.5~0.8 mm です。 これらの電極部分は、信号を感じない不感部分となります。 X線の電極での吸収が小さい p+電極側が入射側になりま す。この結晶に逆バイアスをかけることで、自由電荷のほ とんど存在しない空乏層を作ります。この空乏層が、実効 的な検出部となります。結晶の全域を空乏層にするには、 不純物濃度が10¹⁰/cm³以下の高純度な結晶が必要となり ます。

X 線測定用の HPGe 検出器素子の形状は, プレナ型も しくは半同軸型が使用されます(Fig. 3)。素子の厚さは5 ~10 mm 程度です。Ge 結晶は, 真空クライオスタット内 に置かれ, 通常液体窒素を用いて冷却します。液体窒素を 用いず電気式冷却装置を用いて冷却する検出器⁴⁾もありま す。

ほとんどの検出器は電荷有感型の前置増幅器(プリアン プ)を備えています。その目的は、検出器素子からの微弱 な信号を主増幅器(スペクトロスコピーアンプ)へ損失な く信号を伝達するために、信号を増幅し、インピーダンス 整合を行うことです。多くの場合前置増幅器の初段 FET⁴

Fig. 3 ゲルマニウム検出器素子の断面図

は熱雑音を避けるために素子とともに冷却されています。 一般には、検出器自身やプリアンプの調整は、メーカー出 荷時に素子と前置増幅器のフィッティング調整がなされて います。

Ge 検出器の選定では、計測において何を優先するかで 素子の形状や前置アンプのタイプを選択します。エネル ギー分解能か高エネルギーの検出効率かで素子サイズを、 スループット⁵ かダイナミックレンジかで前置アンプのタ イプを選択します。検出器の選択には SEIKO EG&G 社 の Web サイト「最適な Ge 検出器の選び方」⁵⁾が参考にな ります。

3.2 シリコンドリフト検出器 SDD⁶⁾

シリコンドリフト検出器 (SDD) は,1 Mcps (=10⁶ cps) という高計数率測定が可能であり,それでいてエネ ルギー分解能は液体窒素冷却の Si(Li) 検出器と同等かや や劣る程度,ペルチェ冷凍機を使用し室温動作が可能で小 型のため,非常に注目されています。この特徴は検出器素 子の特殊な電極構造によって実現されています。一方,そ れを維持したまま広い受光面積の素子を作製することは困 難です。SDD 素子のモジュールはドイツの KETEK 社が 製造販売しており,それを使用した完成品が多くのメー カーから発売されています。

SDDの構造(Fig. 4)は、高純度n型シリコンに、X線の入射部となる広い均質なp電極(Fig. 4下面)と、その背面の中央にn電極を、それを同心円状に多くのp型ドリフト電極が取り囲む構造になっています。素子に両面からバイアスを掛けることにより、素子両面から電場の谷が図中素子内部の矢印の幹の部分に向かい発生します。また、同心円状に配置されたドリフト電極によって、電場の谷はアノードに向かって深くなります。X線により生成された電荷信号は、素子内矢印の電荷の谷に沿ってアノードへとドリフトします。このような構造により、電荷容量は小さくなり、また、漏洩電流を低く抑えることができるため、低雑音で高速な信号を得ることができます。

Fig. 4 シリコンドリフト検出器素子の断面図⁶⁾。X線により生成 された電荷は,素子内矢印の電荷の谷に沿って中心部のア ノードへと集められる。

5 実際に処理できる計数

⁴ Field effect transistor; 電界効果トランジスタ

高スループットであるという SDD の性能を活かすため には,高スループットの信号処理系が必要になります。ア ナログ処理系では残念ながらその性能を活かしきれないの で,デジタル信号処理システムの利用が望ましいでしょう。

3.3 どれを使う?

多くの場合,HPGe-SSDが適しています。他の検出器 に較べ,エネルギー分解能が高く,高エネルギーまで検出 効率を落とすことなく測定でき,大面積の素子の作製が可 能なため測定の立体角を稼ぐことができ,比較的高い計数 効率での測定が可能だからです。さらに計数を向上させる 場合には,多素子化することで立体角を稼ぎ,計数回路を 並列に用意し使用することで対応できます。

Ge 検出器の短所としては,素子の冷却装置を必要とするため大型となり取り扱いが煩雑であること,無視できない大きさのエスケープピークが発生し,吸収端前後で計数効率が不連続であることがあげられます。

窒素冷却を必要としない小型の検出器としては,低エネ ルギーではSiドリフト検出器やSi-PINフォトダイオー ド検出器が,高エネルギーでは,CdTe検出器,HgI2検 出器などが選択肢にあがります。液体窒素冷却が不要であ るという点は,安全であり,取り扱いを簡便にします。長 いアーム上や,多数の機器で混雑している試料周りへの設 置も容易になります。素子の冷却時間をほとんど必要とし ないので,使いたいときにすぐに使用できるのも大きな利 点です。

ゲルマニウムのエスケープピークや K 吸収端前後での 検出効率の不連続を避けるには、シリコンの検出器を選択 することになります。十分な X 線強度があり、できるだ け高スループットの検出器が必要であれば Si ドリフト検 出器がよいでしょう。

4. 検出器の取り扱い

4.1 設置

原則として SSD 本体はステージや遮蔽体等から絶縁し て設置します。接地しているとグランドループが発生し, ノイズの影響を受ける場合があります。信号ケーブルも同 様で,コネクタがステージ等に接地しないようにします。 ケーブルはできるだけ短く,またモーター類のノイズを多 く発生しそうなケーブルからは離しておくことが望ましい です。信号ケーブルのインピーダンスは,ナノ秒オーダー の高速計測が必要でない場合にはそれほど気にしなくても 計測できますが,できるだけ整合性をとるようにしてくだ さい。シグナル出力は 93 Ω であり, RG-62ケーブル等を 使用します。

4.2 冷却

検出器が冷却されていない状態で高電圧をかけると結晶

に大きな漏れ電流が流れ,前置増幅器を損傷するので行っ てはいけません。液体窒素を入れ(または冷凍機の電源を 入れ),マニュアルで指定された時間待ってください。再 冷却するときは室温に完全に上がるまで待ってから行うよ うにします。

4.3 バイアス電圧の印加

バイアス電圧の印加は、プリアンプの出力をオシロス コープで確認しながら行います。印加電圧は急激に上げず に徐々に行います。急激に印加すると、前置増幅器を損傷 する場合があります。正常な出力信号が確認されないとき は、印加を直ちに中止して原因を確認します。液体窒素が なくなり素子温度が上昇すると bias shutdown 信号を発生 させ、高圧電源出力を停止させることができます。ただし、 shutdown 信号で電源が切れるからといって必ずしも検出 器にダメージをまったく与えないわけではありませんの で、使用中は液体窒素の補充を常に気にかけてください。

4.4 検出器の劣化

放射光実験では,高計数率で使用する場合が多いために 劣化や損傷に気を付ける必要があります。大強度 X 線を 入射すると,素子や前置増幅器の回路にパルスが連続的に 入り,直流電流が流れるのと同様なショート状態になり破 壊されることがあります。また、半導体検出器は長期間使 用していると劣化します。キャンベラ社は、Ge-SSD をで きるだけ常時冷却するように推奨しています。室温ではわ ずかですが n +電極のリチウムが拡散し不感層が増え (0.19±0.07 mm/年),冷却 – 昇温を繰り返すことにより 機械的な劣化を引き起こすため、常時冷却した検出器の寿 命は、そうでないものより明らかに長くなるとのことです。

5. エネルギースペクトル測定

5.1 計測回路

エネルギースペクトルを測定するときは、プリアンプの 出力をスペクトロスコピーアンプ(AMP)で増幅したあ と、マルチチャンネルアナライザー(MCA)に蓄積しま す(Fig. 5)。

AMP では、増幅率(Gain)や、整形時間(Shaping time)のほかに、波形整形におけるオーバーシュート、ア ンダーシュートを補正するために、Pole zeroの調整が必 要です。AMP 出力をオシロスコープで確認しながら調整

Fig. 5 エネルギースペクトル測定時の計測回路の構成例

Fig. 6 三角縁神獣鏡の蛍光 X 線スペクトル¹¹⁾

してください。Shaping time の設定値は,計数率とエネ ルギー分解能を天秤に掛けることになりますので,実験の 要求に従って設定してください。

近年、デジタルベースの計測システムが普及し始めてい ます⁷⁾。プリアンプからの出力を高速 ADC でデジタル変 換し、その後の処理を DSP マイクロプロセッサーでリア ルタイムに行う形式のシステムです。アナログのシステム に比べ高い計数を得ることができ、波形整形に使用するフ ィルターを検出器にあわせて最適化可能です。また、調整 をソフトウェア上から行えるので, Amp gain や SCA window の設定などがとても容易になりました。デジタル 計測システムの性能は,搭載する ADC/DSP チップの性 能と、DSP マイクロプロセッサー上のプログラムにかか ってきます。安価なものや、メーカー初期の製品では、チ ップの性能やソフトウェアの最適化に問題のある製品もあ りましたが,現在では十分実用されています。ADC/DSP チップは今なお高速高性能なものに進化しているので、ソ フトウェアのブラッシュアップとともに、今後、更なる性 能の向上が期待できます。

5.2 エネルギー校正と検出効率の補正

半導体検出器の場合,パルス波高はエネルギーによく比例するので一次式で十分実用的ですが,2次以上の多項式を用いることもあります。較正係数は,入射X線や蛍光X線ピークやチェッキングソース(55Fe,57Co,133Baなど)の既知のエネルギーの測定ピークから容易に求められます。

検出効率曲線の測定は、較正用のチェッキングソースな どを使用し実験的に求められます。効率曲線は検出器に入 射する X 線の位置や方向に依存するので、実際の測定と 同じ条件で行うようにします。また、EGS⁸⁾や MCNP⁹⁾な どシミュレーションコードを使って求める場合もありま す¹⁰⁾。検出効率曲線は、蛍光 X 線分析などで検量線⁶を求 める場合はそれに検出効率が含まれますので必要ありませ んし、XAFS、回折などでは、一連の実験において特定エ ネルギーの相対的な X 線強度変化を測定するので,あまり問題とはなりません。

5.3 スペクトル測定の実際

エネルギースペクトルの例として,青銅鏡の蛍光 X 線 分析測定のスペクトル¹¹⁾を **Fig.6**に示します。入射 X 線 エネルギーは70 keV,検出器は HPGe-SSD (100 mm², t = 10 mm)を使用しています。青銅鏡の主成分は銅(~ 75%),錫(~20%),鉛(~5%)です。スペクトルには, エスケープピーク⑨やサムピーク③などが確認できます。 15 keV 以下では,コンプトン連続が現れています。30 keV 以上の領域のなだらかな分布はパイルアップの影響 を受けています。2.4節で説明しました検出器の応答関数 はこのように現れます。

組成の定量評価には,試料の内部吸収を考慮することが 不可欠ですが,この例では表面の錆の厚みの評価ができな いため,定量的な評価は行っていません。

5.4 ゲインシフト

検出器自体やアンプなど電子回路は温度変化や長時間動 作においてゲインシフトが起こります。例えばプリアンプ の温度安定性は <0.005%/℃程度,また,長時間安定性は <0.01% over 24 h 程度です。小さいように感じますが, 回路が10度発熱した場合,そのずれは2000 ch において1 ch のずれに相当し無視することはできません。特にプロ ファイルの比較で差分をとる場合は大きく影響します。

Fig. 7は磁気コンプトン散乱測定の例です。この実験で は,試料にかける磁場を反転し,エネルギープロファイル を2本計測し(I_+ , I_-),この差分から磁気コンプトンプ ロファイル(I_+ - I_-)を求めます。エネルギープロファイ ルの強度変化は約0.4%,ピークフィットで求めた500 ch でのゲインシフトは0.01 ch以下で, I_+ , I_- はほとんど重 なってみえます。しかし,その差分(図中〇)は,鉛の蛍 光 X 線ピーク(500 ch, 75 keV)を見ればわかるようにゲ インシフトによる大きな微分成分が現れてしまいます。こ の測定では,短時間での測定を繰り返し時間的な変動を平 均化することでゲインシフトを打ち消しています(図中●)。

X線を入射していないときと入射中では回路を流れる

⁶ 組成,量のわかっている標準試料と、それに対する測定データ と関係を示したグラフ。関係式には散乱断面積や試料内部での 自己吸収のほか検出効率が含まれている。

Fig. 7 Niの磁気コンプトンプロファイル。I₊−, I₋−がエネル ギープロファイルで、●, ○はその差分 I₊−I₋(磁気コン プトンプロファイル)。I₊, I₋−双方 2時間連続の測定の 差分○ではゲインシフトによりその微分成分が現れるが、 60秒の測定の繰り返し●では、ゲインシフトは平均化さ れる。

電流が変わり、回路からの発熱により温度が変化しますの で、検出器測定装置の温度が十分に安定してから測定を開 始するようにします。ハードウェアによるゲインシフト は、装置の温度を安定化させることで軽減できますが、完 全に避けることは困難です。ゲインシフトの補正は、測定 後にソフトウェアで行うのが一般的です。Gain Stabilizer 機構を有する MCA システムも存在します。

6. エネルギー選別計数

6.1 計測回路

ある任意のエネルギー領域のイベント数をカウントする 場合,検出器のプリアンプからの出力を,AMPで増幅し シングルチャンネルアナライザー(SCA)でエネルギー を選別し,カウンターで数えます(Fig. 8)。また,MCA は調整時やモニターとして使用します。SCAのカウント 数のみを見ていると計数率が少ないと勘違いしがちです が,実際には,検出器は散乱X線や共存元素からの蛍光 X線も検出しているので注意してください。

放射光実験では Shaping time は最小値を選び計数率優 先の設定にする場合が多いです。Gain 調整は,高計数測 定で数え落しの補正が必要な場合は,サムピークが見える ように設定するのがよいでしょう。また,その補正のため に AMP から,プリアンプのカウント数(ORTEC 社の場 合 CRM 出力, Canberra 社の場合 ICR 出力からのカウン ト数)も計測します。

6.2 数え落とし補正^{1,12-14)}

高計数率で測定をすると、検出器は数え落しをします。 数え落とし補正は、ピーク強度とその誤差に大きな影響を 与えます。Fig.9は蛍光 XAFS 測定での、低計数率での測 定(青)と、高計数率測定で数え落し補正なし(緑)、高

Fig. 8 エネルギー選別計数時の計測回路の構成例

Fig. 9 K₂MoO₄のX線吸収スペクトル¹⁴⁾

計数率測定で数え落し補正後(赤)のXAFSスペクトル を示しています。高計数率の測定では、数え落としにより 計数に大きな変化が起こり、補正が必要なことがわかると 思います。数え落としをどの程度しているかの判断は、ス ペクトロスコピーアンプで処理された後のパルスの計測や、 MCA上での観測では正確な判断はできません。

補正は、実験的に求めた補正曲線を使用します。増幅器 以外に前置増幅器も数え落としをしている可能性があるた め、イオンチェンバー(IC)の値も使用します。補正曲 線は、入射 X 線の強度をアルミや銅の板などの吸収体を 用いて段階的に減らし、IC, CRM (ICR), SCA (MCA)の 値を計測し、それらの相関プロットをフィッティングし取 得します (Fig. 10)。フィットする理論式は、真の計数率 を n、記録された計数率を m、装置の不感時間を τ として、

麻痺型
$$m = n \exp(-n\tau)$$

非麻痺型 $m = n/(1+n\tau)$ (5)
 $n\tau \ll 1$ での近似 $m = n(1-n\tau)$

などを用います。放射光はパルス光なのでバンチ構造が絡 んでくるために理論式¹⁵⁾は非常に複雑になるのですが, 上記式で十分実用的です。理論式による違いが現れるよう な高計数率の測定では,補正後の値の誤差が大きくなるの で,そのような測定は行わないようにします。数え落とし 補正後の値の統計誤差は,その平方根ではなく,測定カウ ント数の統計誤差が伝播したものです。

補正曲線は,機器の設定値やバンチモードなど実験の条件により変化するので,その都度,補正曲線を測定する必

Fig. 10 入射 X 線強度(I0)と(a) プリアンプ出力(ICR),および(b) SCA 出力の相関図¹⁴)。これよりプリアンプ,アンプの不感時間,τ_{ICR}=0.32 µsec,τ_{AMP}=1.26 µsec が求まる。Canberra Ge-SSD GL0055P, Canberra Fast Spectroscopy Amp 2024 (Shaping time 0.25 µsec), ORTEC SCA 550A, ORTEC Counter 974を使用。

要があります。間違った補正をおこなってもプロファイル を見ただけでは気づきにくいので補正を行う際は,十分注 意してください。

6.3 数え落としとバンチ構造

放射光はパルス光です。パルス間隔は、マルチバンチ運転では数 nsec のオーダーですが、シングルバンチ運転ではパルス間隔が μ sec のオーダーになります。半導体検出器と計数回路系が1パルスの処理に必要な時間は1 μ sec 前後ですから、これと同程度か長い間隔です。このような条件では、数え落しは検出器系の不感時間の影響のみでなく、入射X線の時間構造も影響されます。パルス間隔 τ ではなくパルス間隔の1/2程度になります。SPring-8のセベラルバンチ運転では、不感時間は倍以上になってしまう場合がありますので半導体検出器で高計数率測定を行う実験では、できるだけ均等なバンチモードを利用することが望ましいのです。

7. おわりに

半導体検出器の開発は1960年頃に始まり、その歴史は

50年になります。エネルギー分解能は Ge, Si 検出器は理 論的な分解能にほぼ達しており,非常に完成された検出器 の一つでしょう。これ以上の高分解能を期待するのは難し いですが,SDDのような高計数率化や,電子冷却による 小型化,化合物半導体検出器¹⁶⁾など発展し続けていま す。さらに,デジタル信号処理技術による低ノイズ化や高 計数率化,ソフトウェアの高度化で更に使いやすいものに なることが期待されます。

8. 利用情報

1. 高純度ゲルマニウム検出器

Ortec http://www.ortec-online.com/detectors/photon /detectors.htm

セイコー・イージーアンドジー㈱

http://speed.sii.co.jp/pub/segg/hp/prod_detail. jsp?mcatID = 328 Canberra

http://www.canberra.com/products/449.asp

- http;//www.canberrajp/
- シリコンドリフト検出器 BrukerAXS(型番:XFlash series) http://www.bruker-axs.de/index.php) KETEK: http://www.ketek.net/ セイコー・イージーアンドジー㈱

http://speed.sii.co.jp/pub/segg/hp/prod_detail. jsp?mcatID = 328&sbIcatID = 459#CatDetail $\uparrow_{c} \succeq$

参考文献

- GLENN F. KNOLL: 放射線計測ハンドブック 第3版, ISBN-13:978-4526047206,日刊工業新聞社(2001.3); 野口正安,富永洋: 放射線応用計測一基礎から応用まで, ISBN-13:978-452605374,日刊工業新聞社(2004.12)など
- 2) http://www.ortec-online.com/detectors/photon/a5_2.htm
- J. Ebertha, J. Simpsonb: Progress in Particle and Nuclear Physics 60, 283–337 (2008).
- 4) Ortec:X-COOLER II; Canberra: Cryo-JT など
- 5) http://speed.sii.co.jp/pub/segg/hp/prod_detail.jsp?mcatID = 328&sbIcatID = 457&prodID = 1321#ProductDetail
- P. Lechner, et al.: NIM A 458, 281–287 (2001).
 XIA: DXP-XMAP, http://www.xia.com/
- Canberra: DSA series など
- 8) EGS4: http://rcwww.kek.jp/egsconf/index.html
- 9) MCNP5: http://mcnp-green.lanl.gov/
- 10) C. M. Salgado et al.: Appl. Rad. Isotopes 64, 700–705 (2006).
- 11) 樋口隆康ら:泉屋博古館紀要 24, (2008).
- M. Nomura: J. Synchrotron Rad. 5, 851–853 (1998); idem, KEK Report 98–4 (1998).
- 13) http://pfwww.kek.jp/nomura/pfxafs/
- 14) http://bl01b1.spring8.or.jp/
- 15) C. COUSINS: J. Appl. Cryst. 27, 159–163 (1994).
- 16) Alan Owens, A. Peacock: NIM A 531, 18–37 (2004).