解説

二次元分光法による 超励起分子のダイナミックスの"鳥瞰図"測定

鵜飼 正敏

東京工業大学理学部

A Bird-Eye's-View for the Dynamic Behavior of Superexcited Molecules by Means of Two Dimensional Spectroscopy.

Masatoshi UKAI

Department of Chemistry, Tokyo Institute of Technology

The decay dynamics of superexcited molecules in the energy region of valence electron excitation is overviewed by means of two dimensional (2D) spectroscopies using a position sensitive detector. Two kinds of measurements as a function of excitation photon energy are presented. One is the yield spectrum of dispersed fluorescence radiation emitted from excited fragments for observing neutral dissociation of superexcited molecules. Another is the photoelectron kinetic energy spectrum to observe resonance enhanced photoionization. In both cases the spectrum is presented as a 2D surface of the yield. The purposes of the measurements are to obtain the information of potential structures of highly-lying superexcited states and to grasp the overview of the decay process of interest in the light of correlation among particular channels. As a typical example, the results for N₂ in both measurements are presented.

1. はじめに

気相における孤立分子の真空紫外分光実験は、超励起状態のダイナミックスの研究という側面が強調されてきている。超励起状態は元来、分子分光学的な対象としてではなく、物質への放射線作用の面から、"イオン化ポテンシャル以上のエネルギーを付与されてもイオン生成をしない特異な励起状態"として注目され、放射線エネルギーの付与によって誘起された反応の特異な最終生成物や収量の異常を説明する概念として提唱された"。現在では初期励起された超励起状態の分光観測や

エネルギー緩和過程のダイナミックスを直接観測 することへと重心が移っている²⁻⁵⁾。

本稿では、超励起状態の動力学的知見、特にポテンシャルエネルギー曲線についての情報を得るためになされた最近の研究を紹介する。これらは直接・間接に核運動のダイナミックスを取り入れることによってなされた、"化学反応の中間状態としての超励起状態"の研究の試みである。。

2. 真空紫外領域における超励起状態の分光研究

2. 1 超励起状態

超励起状態とは分子の最低イオン化ポテンシャル(IP)以上の内部エネルギーを保有する中性励起状態である。一般に分子の最低IPは10eV程度であり、波長的には真空紫外領域にあたるため、超励起状態は真空紫外から軟X線までの波長領域に幅広く無数に存在し分子の光吸収とそれに引き続く光物理過程を特徴づけている²⁰。

超励起状態は、電子放出に対応するイオン化連 続状態の中に離散的に存在し, 一時的に束縛状態 の電子的波動関数を担持する擬似固有状態である。 これまで直接的な観測手段として、電磁波に対す る分子内束縛電子の応答性の大きさである光学的 振動子強度分布の波長依存性を調べる光吸収スペ クトルの測定がなされている6-80。超励起状態の固 有エネルギー(波長)において振動子強度分布は 離散的な特異値を持つため、吸収スペクトル中に ピーク構造を観測することができる®。ところが、 離散状態である超励起状態とイオン化連続状態と の相互作用により、固有状態としての波動関数の 直交性は破綻し、超励起状態が短時間のうちに電 子を連続状態へと放出する自動イオン化過程が起 こる。このため超励起状態は光イオン化効率曲線 などに自動イオン化構造として観測される⁹⁾。

ところで分子の場合、超励起状態の大きな内部エネルギーが緩和する経路として、自動イオン化だけでなく、中性解離が存在するために、IP以上のエネルギーを吸収しても超励起状態が存在することでイオン化確率は1を下回る²⁰。つまり原子の場合のように"自動イオン化状態"という表現が必ずしも適切でない。解離断片としてIP以下の内部エネルギーしか持たないならば、自動イオン化によるイオン生成と中性解離とが競争過程となるため³⁰、このような外殻吸収領域での競争の様子は光吸収に対するイオン化の確率である光イオン化量子収率の励起波長依存性に見ることができる^{4,10-120}。すなわち、IP近傍では超励起状態は電子的基底イオンに収束するリュードベリ状態が主

であり、その振動・回転的に励起したものあるいはポテンシャル曲面の斥力壁上に励起されているものである。これらの自動イオン化は核の運動からのエネルギー変換が必要となる非断熱的なプロセスであるため中性解離に較べて早くない。しかし励起エネルギーの増大とともにより内側の軌道電子を励起した超励起状態 $^{(3)}$ が出現する。これらの場合には電子遷移のみによって電子状態が緩和するものが主となり $^{(3)}$ 、はるかに速やかに自動イオン化が起こる。したがって光イオン化量子収率は波長が短くなるにつれて徐々に1へと収束する $^{2,4,5,10-12}$ 。

さらにエネルギーが増大するとinner valence 軌道からの励起が可能となる。これらの軌道は, 分子を構成する原子の外殻s軌道に主として由来 し、結合に直接的に関与するというよりは、核電 荷を遮蔽して外殻軌道を生じさせる場を提供して いる軌道であるため、外殻軌道との強い電子相関 を生じている。このような軌道からの電子励起が 起こり得る領域ではこれらの電子相関が際だって 顕在化するようになる14-18)。特に基底状態におい て緊密な分子軌道を持つ系では軌道間の相互作用 が強く、厳密な意味での一電子励起が起こりにく い。つまり、独立粒子模型に基づく凍結軌道から の一電子的励起という近似は、エネルギーの小さ い領域ではエネルギー収支の結果として成立した に過ぎず、エネルギー的に多電子遷移が可能とな ると、一電子近似の破綻が目立ってくる。 つまり 二重イオン化¹⁹⁾,二電子励起²⁰⁻²²⁾,電離サテライ ト(電子励起したイオン)の生成23), などが大き な確率で観測されうるようになる。

このようなinner valence 領域での超励起状態の役割は第一IP周辺とは異なっており、中性解離状態としても自動イオン化状態としても重要ではない。つまりこの領域での光イオン化量子収率はもはや実験誤差内で1に収束しており^{2,4,5,10-12)}、かつ幾つもの一電子的状態への直接イオン化過程が断面積の主要部分を占めている。むしろ主過程

である直接イオン化において連続状態の波動関数に影響を与える摂動体としての役割が重要となる(離散・連続チャンネル結合)¹⁴⁻¹⁷⁾。しかしinner valence 領域での高励起状態や反発ポテンシャルを持つ状態についての知見はまことに少ないため、超励起状態のエネルギーレベル、ポテンシャル曲線、そして波動関数を正確に決定することによりはじめて、主過程である直接光イオン化を正確に評価できることになる。

2. 2 超励起状態の"鳥瞰図"測定法

本稿で紹介する研究は以上述べてきた超励起状 態のポテンシャルエネルギー曲線についての知見 を得るための試みである。これまで超励起状態の 分光観測は, 吸収スペクトル測定や, 上述の超励 起状態の自動イオン化状態としての性質に着目し てイオン化効率曲線中の特異的な自動イオン化構 造を調べるものであった。しかしこれらの分光法 では種々の生成物を生じる過程を積算したものを 観測するため、離散スペクトルを与える超励起状 態の振動レベルの観測に限られている。さらに詳 細な知見を得るためには、その重なりの程度を下 げていかなければ観測値から適切な情報を引き出 すことは難しい。一つの解は単独の部分イオン化 過程を取り出すことのできる光電子分光法であ る⁶。特に部分イオン化過程の閾値近傍では当該チ ャンネルへの直接イオン化の寄与が小さいため超 励起状態の自動イオン化構造をきわめて明瞭に観 測することができる。もう一つはある核間距離位 置での二つの超励起状態のポテンシャル曲線間の 相互作用を反映した中性解離過程を分光のプロー ブとして用いる方法である4.20-22,24-27)。この場合に はイオン化の寄与を直接過程・自動イオン化を問 わず除去することができるため、超励起状態につ いての情報のみが得られる210。両者ともに核運動 のダイナミックスを取り入れることによりきわめ て有効にポテンシャルエネルギー曲線についての 知見を得ることができると期待される∞。

ところが、超励起状態は単一でなく、またその 崩壊プロセスや生成物も単一ではない。超励起状 態を介する中性解離にせよ自動電離にせよ、始状 態として多チャンネルの超励起状態が多チャンネ ルの終状態と相関しているという図式が成り立 ち、これらを接続するものとしてポテンシャル曲 線とそれらの間の遷移確率についての情報が必要 となるい。また超励起と直接イオン化過程とは便 宜上, 別個のものであるかのように議論される が、相関は始状態と終状態だけでなく始状態間, 終状態間においても存在するため両者の相互作用 を含めると問題はきわめて複雑となる14-170。した がって例えば光電子分光におけるCIS(Constant Ionic State) 光電子分光法²⁹⁾ によりイオン終状態 を特定した上でスペクトルを一枚測定するという ような一対一対応の考え方では多チャンネル対多 チャンネルの相関についての情報をほとんど取り こぼしてしまうことになる。

そこでこのような問題を解決するために、分散スペクトルを励起波長の関数として二次元的に観測する、いわば2パラメータ実験が行われている^{24,30-32)}。これらは近年の放射光の高強度化と位置敏感検出のメリットを組み合わせたものである。特にここで取り扱おうとする過程は上述のようにきわめて微弱であり、より詳細な情報を感度良く測定するための技術開発の成果である。

3. 実験

解離種からの発光の分散スペクトル測定は高エネルギー物理学研究所フォトンファクトリー(PF)において、また光電子分光は英国SERCダルスベリー研究所放射光施設(SRS)において行った。3m直入射型分光器を備えたPFの極紫外気体分光ステーションBL-20Aでの単色化放射光の強度は、波長分解能0.1nmにて約10¹²光子/秒である。これは従来のBL-12Aにおける瀬谷・波岡型分光器からのものと較べて約2桁の強度増大であり、本実験のような微弱な生成種の分散実験にはきわ

めて有利である。一方 SRS では 3.2 ステーション の5m McPherson型分光器からの光を用いた。強度はほぼ同程度である。

分散発光スペクトルの測定には図1の装置を用 いているが、全体が小型の瀬谷・波岡型分光器を 構成している24.26)。これは分子と光子との衝突チ ェンバーと回折格子チェンバーとからなり、それ ぞれターボ分子ポンプで作動排気されている。衝 突チェンバー内のガスセル中を紙面に対して垂直 に単色化放射光が通過し, 生じた励起フラグメン トからの真空紫外発光を発光点を入射スリットに 見立てて曲率半径 20cm の回折格子により分散す る。さらに結像面上のスペクトルをマイクロチャ ンネルプレート (MCP) と連続抵抗陰極型の位置 敏感検出器 (PSD) とを組み合わせて 40nm 程度 の波長範囲を同時に測定した。しかし小曲率の ローランド円の接線方向に一次元検出器を設置し たために到達分解能は2~3nm程度である。なお MCP は CsI 塗布により量子効率を長波長側まで拡 張したものを用いた。分散発光スペクトルは励起 波長に同期して取り込みを行い、励起波長に対す

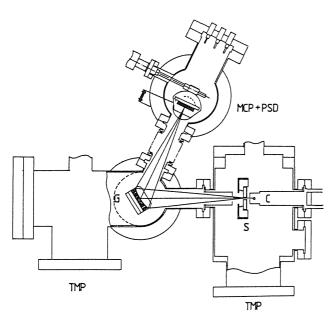


Fig.1 Schematic view of the apparatus for dispersing vuv-fluorescnece radiation. Fluorescence emitted from gas cell (C) is dispered by a grating (G). The dispered spectrum on the focal plane is obtained simultaneously by MCP and PSD.

る連続的励起関数として取得した。

光電子分光器 31.32 は図2に示すような静電レンズと中心半径 10cm の静電分散型半球アナライザーとから構成された一般的なスペクトロメーターであり、偏光による光電子放出の異方性を避けるため、放射光の偏向軸に対して54.7度方向に放出される光電子のエネルギー分析を行う。分散された光電子はスペクトロメーターの出口においてMCPにより電荷増幅された後、116チャンネルの電荷感応電極により一次元位置敏感検出される。スペクトロメーターの分散電圧に依存する分散と単色化放射光のバンド幅の両者を含んだ実効的なエネルギー分解能は、励起光エネルギー20eVにおいて約30meVであった。

4. 超励起状態の中性解離過程の"鳥瞰図"

中性解離フラグメントからの発光をプローブとする超励起状態の観測はすでに我々のグループによっていくつかの簡単な分子について行われている^{20-22,25,27)}。本説では、これらを発展させ真空紫外発光スペクトルを励起波長に対して連続的に取得し、発光波長と励起波長両者の関数として超励起状態の中性解離過程を鳥瞰する試みについて述べる。

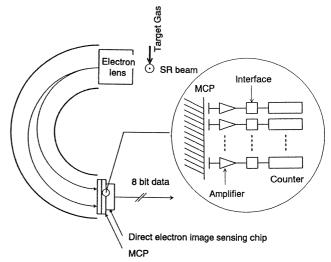
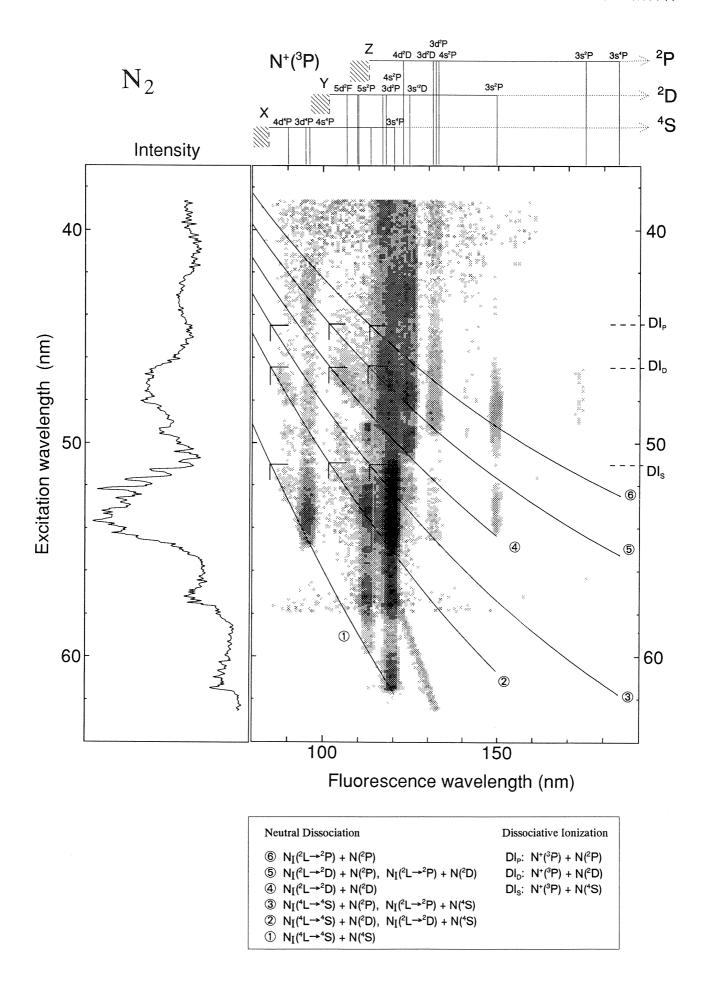


Fig.2 Schematic diagram of photoelectron spectrometer equipped with a multi-electrode PSD.

4.1 解離フラグメントからの発光観測

ところで真空紫外発光を中性解離過程のプローブとすることによって、発光をイオン化過程に由来するものと区別できることは重要な利点である。すなわち安定親分子イオンからの発光はほとんどが可視・紫外領域に存在する。真空紫外発光が可能な親分子イオンはきわめて大きな内部エネルギーを保有する状態となってしまい、高い密度で存在する解離的イオン状態との相関によりほとんどが前期解離する。したがって、親イオンからの真空紫外発光は中性解離過程よりもはるかに微弱である。また高励起イオンの解離によって真空紫外発光性のフラグメントを与える場合の解離極限はさらに高エネルギーの領域に存在するため、中性解離過程とはエネルギー収支の面から厳密に区別できる。

この観測法はイオン化閾値周辺よりもinner valence領域でより真価を発揮する。2節で述べたとおり、この領域では光イオン化量子収率はもはや実験誤差内で1に収束しており、また光吸収断面積の中には一電子的状態への直接イオン化の寄与がほとんどを占めているため、超励起状態の観測を行う上でこれらから生じる中性解離フラグメントがきわめて有効なプローブとなる。この領域での分子高励起状態や反発ポテンシャルを持つ状態についての知見はきわめて少ないが、発光観測はこれに対して重要な知見を与え得るものである。


しかし解離フラグメントを単にプローブとして 用いるだけでなく、以下のようにその量子状態を 識別しダイナミックスについての詳細な知見を得 ることにより^{24, 25, 33)} ,超励起状態のエネルギー状態、ポテンシャル曲線、そして波動関数について の情報は飛躍的に増大する。このような摂動体と しての超励起状態の情報を得ることによって、は じめて主過程である直接光イオン化を正確に評価 できると期待される。

4.2 二次元発光励起スペクトル

窒素分子についての測定例³³⁾ を図3に示す。これは励起波長39~62nmにおける80~180nmの真空紫外発光スペクトルの変化を示したものである。強度は対数スケールで表し、白から黒へと増加する8段階の濃淡階調で示した。あわせて、分散を行わない積分発光強度の一次元発光励起スペクトルを示した。

二次元スペクトル中の縦軸に平行に現れた連続 的な構造はすべて中性の窒素原子(NI)からの発 光スペクトルである。窒素分子の第一IPは励起波 長79.5nmに存在し、また真空紫外発光性のフラ グメントを生じる解離的イオン化の極限は35.8nm であるため、ここに示したNIのスペクトルは全て 超励起窒素分子の中性解離によって生成したもの である。また親イオン分子からの発光はこのスペ クトルには観測されていない。なお励起波長50~ 63nm に見られる斜めの線はガスセル内で散乱さ れた励起光が二次回折光として現れたものである。 同定した発光線を図の上欄外に示したが、真空紫 外領域のNI発光はすべて基底電子配置から生じ 3 4 S, 2 D, 2 P 4 O 4 O 4 S, および nl ²L→²D, ²Pの発光の系列が N¹(³P) を 極限として収束する。二次元スペクトルには励起 波長の変化とともに多数の発光線が強度の交代を 伴いながら出現しており、このような発光線の同 定はある一つの励起波長のみでの測定では困難で ある。また複数の発光線が重なっている領域も多 数見られており、例えば蛍光波長120nm付近の複 数の線スペクトルはこれらの強度の交代に伴うス ペクトル重心の変化から同定できた。つまり分光 技術としては、分解能が向上したことと等価な結 果である。

ところで励起波長が50nmよりも長波長側では 短波長発光線が、50nm以短では長波長発光線が より強調され、スペクトル強度の交代が起こって いるかのように見える。この他にも二次元スペク トルには幾つもの強調構造が見られているが、こ

れらは反発的な超励起状態そのもののポテンシャル構造に起因する前期解離確率を反映しているだけでなく、解離フラグメントの出現エネルギーに依存した閾構造を同時に観測していると考えられる。したがってこれら二つを判別するために、励起エネルギーと解離極限による発光出現波長との関係を次に示す。

◎中性解離閾値構造

中性解離の場合,励起エネルギー E_e は解離極限において次のように分配される。

 $E_e = D + E_f + E_g + E_\rho + KE$

ここでDは基底窒素分子の結合解離エネルギー, (E_f+E_g) は解離フラグメントの励起エネルギーであり, E_f の発光エネルギーを放出して E_g の内部エネルギーを持つ下準位を生ずる状態ということである。また E_g はもう一方の解離原子の内部エネルギーであり,本測定範囲においてはほとんど 4 S, 2 D, 2 Pである。KE は解離原子の相対運動に放出される余剰エネルギーであるが, E_g が丁度,解離極限エネルギーに対応した場合にはKE=0となる。ここで E_g が同一の解離極限は,NI(E_f+E_g)による発光の出現に対し E_g と直線的なエネルギー関係をもつ系列となっていることがわかる。これを波長スケールで示したものが図3中の \mathbb{C} -⑥の曲線である。

以上の中性解離極限によるNI発光の出現閾構造 として以下のようなスペクトル構造を解読することができる。

(1)これらの解離極限においては解離原子からの発光は閾値的に立ち上がる構造を示す。特に励起フラグメントを与える最低の解離励起極限NI(nl)+ $N(^{\circ}S)$ からほとんどすべての発光が出現してい

ることは興味深く、幾つものポテンシャル間の遷 移をともなう多重前期解離により解離生成物が分 配されていることを強く示唆する。

(2)これら励起波長と解離極限とを結ぶ曲線のう ち①. ④. ⑤. ⑥は同一のスピン状態のフラグメ ント対を生じる解離過程に対応するのに対し, ②、③はスピン状態の異なるものである。すなわ ちこの二つの曲線上に解離閾値構造を示すものは すべてスピン禁制解離過程である。例えば NI $(3s'^2D \rightarrow^2 D: 124nm)$, NI $(3d^2P \rightarrow^2 P: 132nm)$ はそれぞれ曲線②、③上の最低の解離極限から出 現しており、解離過程においてスピン-軌道相互 作用が重要であることを示す。但しNI(3s²P)の みは $N(nl^2L) + N(^2D)$ のスピン許容解離に対 応する④の曲線から生じており、上記(1)に対する 例外である。本測定領域では励起フラグメントを 与える超励起状態として,以下に述べるように, 二電子励起状態が主たる寄与を占めており、ここ で見られる結果は複雑な超励起分子系での解離過 程についての重要な情報である。

(3)また励起波長52および48nm付近では上記の曲線に沿った斜め方向の強調構造が見られている(図4)。これらはイオン解離極限(N⁺+N)近傍での収束構造と考えられる。発光スペクトルは原子のIPに収束する一種のリュードベリ系列をなすため、イオン解離極限(N⁺+N)近傍では、中性解離極限が励起原子の状態密度に対応して密集していることになる。そのような中性解離過程が励起波長の変化とともに次々に出現し、それぞれが関構造を持つことにより左上がりの構造を示すと考えられる。原子のIP以上に出現する超励起原子は主として自動イオン化するため、IP以短では発光強度が大きく減少し、これがNI系列の収束極限と

Fig.3 A 2D yield spectrum of fluorescence radiation as a function of both excitation photon wavelength (vertical) and fluorescence wavelength (horizontal) emitted from excited N atoms produced in the neutral dissociation of superexcited N₂. The intensity of fluorescence yield is shown by gray plots increasing from light to dark. A single dimensional excitation spectrum for undispersed fluorescence is shown for reference, which is given by summing fluorescence yields at a fixed excitation photon wavelength.

なる。図中、X, Y, Zは原子の最低のIPである N^* (3P) に収束する $^4L \rightarrow ^4S$, $^2L \rightarrow ^2D$, $^2L \rightarrow ^2P$ の3種類の発光系列の極限であり、また DI_s , DI_D , DI_D は E_p について 4S , 2D , 2P の3種類の 状態に対応する解離性イオン化極限である。すな わち合計 9つの収束構造を呈すると考えられるが (図 3中の "「"),他の構造と重なるため判別が難 しいものもある。

◎超励起状態のポテンシャル構造

以上で述べた解離閾値構造とは異なる励起波長に見られるスペクトル構造は核間距離の小さな領域でのポテンシャルを反映したものであり、分子としての超励起状態のエネルギー状態あるいはポテンシャル構造と解離確率を反映したものと考えられる。以下にその例を示す。

一次元励起スペクトルには多数のスパイク状の離散構造が見られるが、これらは $N_2^+(C^2\Sigma_n^+)$ に収束する $ns\sigma_n$ リュードベリ状態 $^{21,34)}$ によるものである。 $C^2\Sigma_n^+$ 状態は一種の電離サテライトであるためこれらのリュードベリ状態は二電子励起状態と理解されるものである。これらは二次元スペクトルにも複数の発光線の強調として現れており、生成した超励起状態から種々の解離フラグメントが生成していることを示す。

一方,励起波長に対して連続的あるいは幅の広い強調構造が発光強度に見られており,励起波長54,47,43nmを中心とする領域には特に強い強調がある。これらは反発的なポテンシャル構造を持つ超励起状態の中性解離の寄与である。これらの超励起状態についての量子化学計算は皆無である。しかしエネルギー間隔や強調の度合いからみて,この三者を一つのリュードベリ系列と見なすよりは,異なるイオン芯を持つバレンス軌道への励起状態と解した方が適当であると考えられる。樋山と岩田の計算50によれば励起エネルギーが22~35eVの領域では10種類以上の多電子的イオン状態(光電離サテライト状態)が存在することが

報告されており、これらのイオンがさらに一個の電子を束縛したものが超励起状態として観測されたと考えられる。これらにおいても複数の発光線が同時に強調されているが、上述の解離閾値の出現とともに発光線の頻繁な交代が見られる。このことは中性解離が一回のポテンシャル交差によって起こっているのではなく、多段の前期解離によって分子がかなり大きな核間領域にわたって振動しながら超励起状態として存続していること、またそれを許すほど自動イオン化の速度が遅いこと

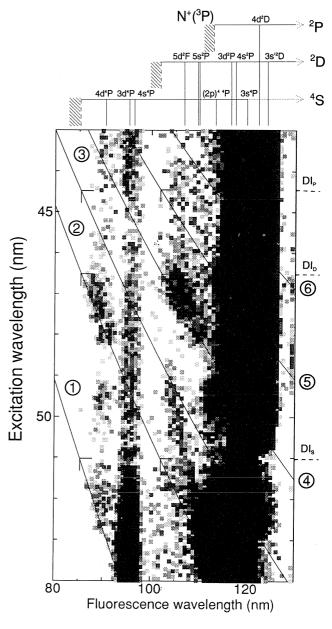


Fig.4 A magnified 2D yield spectrum of fluorescence radiation from Fig.3.

を示していると考えられる。

これら超励起状態の反発的なポテンシャル構造は光吸収スペクトル測定などの直接電離の寄与を多く含む分光法によって見い出すことは難しく、また観測されたとしてもそれを直ちに超励起状態によるものと同定することは困難であった。つまりこのような同定は中性解離過程のみを観測することによって始めて可能となる。

以上,二次元発光スペクトルでは,超励起状態と解離エネルギー極限との対応と,ポテンシャルエネルギー曲線の交差領域における構造が両状態にどのように相関を与えているかを一目で鳥瞰することができる。

5. 光電子スペクトルの二次元鳥瞰図

5.1 放射光を利用した紫外光電子分光

孤立分子の紫外光電子分光は、イオン終状態の ポテンシャル構造を反映したスペクトル分布を示 すと考えられており、He共鳴輝線光源などを用い た種々の測定がなされている。しかし、例えばHel 輝線のエネルギー21.2eV での分子の光イオン化 は、純粋に直接電離のみと見なすには問題がある。 すなわちこの程度のエネルギーには軽元素の2s軌 道に由来するinner valence 軌道からの超励起状 態が存在するため、光電子スペクトルの振動分布 は基底状態とイオン終状態との間の Franck-Condon(FC)因子のみによって決定されるのでは なく、超励起状態への励起とその自動電離という 二段階過程のFC因子が大きな寄与を持つことにな る。このため波長可変光源を用いて直接電離と自 動電離の寄与とを分離した測定が行われなけれ ば、光電子分光法によるイオン終状態のポテンシ ャル決定は難しい。逆に言えば光電子分光は共鳴 光電離過程の観測が可能であり、超励起状態の研 究に応用できる。部分電離過程の励起エネルギー 依存性の定量的評価という意味からは、シンクロ トロン放射光を用いた研究がなされている が、7.29),本節では光電子分光法をもう少し超励起 状態のダイナミックスの研究へと拡張した例を示 す。

5. 2 二次元光電子スペクトル³⁶⁾

図5に示したのは窒素分子の価電子領域におけ る二次元光電子スペクトルである。横軸は光電子 の運動エネルギーであり縦軸は励起光子のエネル ギーである。光電子収量は増加に比例して諧調が 強まる灰色の濃淡で表示した。この図は光電子ス ペクトルを光子エネルギーに対する励起関数とし て表示したものであり、光子エネルギーの増加と ともに光電子運動エネルギーが増加するため、傾 き1で右上がりに示された直線構造が個々のイオ ン終状態に対するCISスペクトルとなる。例えば 図5の右下には光電子エネルギー2.0eVから始ま るきわめて強い右上がりの直線構造が見られてい るがこれは分子イオンのB²Σ*状態の振動基底状 態の CIS であり、左上側の多数の斜線は $C^2\Sigma^{\dagger}$ 状 態の振動状v'=0-9のCISである。これに対して 横軸に平行な光電子収量の強調が見られている が、これは超励起状態の振動レベルの励起エネル ギーに対応している。この測定は図3とほぼ同じ 励起エネルギー領域で行われており、図5の右欄 外に示した通り、C²Σ¹、状態に収束するリュード ベリ状態の自動イオン化によりいくつものイオン 終状態を生じている。特に光電子の運動エネル ギーが0.4~2.5eVという閾光電離に近い領域での 測定であるため、個々のイオン終状態への直接電 離の寄与が小さく、きわめて明瞭な自動イオン化 構造を観測することができた。また自動イオン化 は超励起状態を経由する二段階のイオン化である ため、基底状態と個々の分子イオン状態との通常 の二状態間のFC因子では説明できない異常構造を 示している。

このように二次元的なスペクトルを適宜ある方向に沿って観察するというのは多少の経験を要するが、例えば以下のような一次元スペクトルで観測される現象の真偽の識別が可能である。

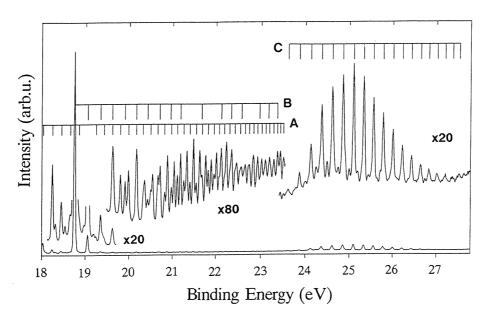


Fig.5 A 2D photoelectron spectrum surface of N₂ as a function of both photon energy and electron kinetic energy (left). The diagonal lines due to molecular photoionization for giving a particular final ionic state correspond to so-called CIS photoelectron spectra. A single dimensional electron binding energy spectrum obtained by summing the electron yields for individual CIS line along the diagonal direction in the upper panel is shown together for reference (upper).

- I. 一次元 CIS スペクトルでの偶発構造が全体から 見て意味のあるものであるか。例えば高次光の 影響の重なりがある場合、その傾きは次数に反 比例して小さくなる。
- Ⅱ. ゼロに近いエネルギーをもつ電子の励起スペクトル (閾光電子スペクトル) は通常イオン終状態の準位観測に有効な方法とされているが、これが本当に直接過程のみによるものであるか超励起状態経由のものであるか。同様に、運動エネルギーを固定した (CES) スペクトルで現れる構造が、ある運動エネルギーに特有のものであるか否か。

5.3 反発ポテンシャル構造

ここで特筆しなければならないのは、光子エネルギー22~25eVにかけて見られる、右上がりでもなく横軸に平行でもない、むしろ左上がりに示されたスペクトル構造である。基底・イオン二状態間のFranck-Condon的な光電子スペクトルはここでも得られていない。これは反発的なポテンシャル構造をもつ超励起状態の存在とその自動イオ

ン化に起因したものであると考えられる。すなわち超励起状態の斥力壁上にFranck-Condon的に励起した分子は励起位置において自動イオン化するかあるいは直接解離の運動中に自動電離することになる。しかし一般的に反発ポテンシャル上を運動中の分子の自動イオン化確率は、

- 1. 自動イオン化前後に核運動のエネルギーを保存 するようなイオンの振電状態を生成するもので なければ非断熱的な過程として制約を受ける。
- 2. 超励起状態の非束縛的な核運動の動径波動関数 とイオンの動径波動関数との重なりが小さいた めに大きく制限される。

このことから励起の起こった斥力壁上の位置(核の運動エネルギーがゼロであり、かつ、もっとも大きな動径波動関数の重なりを持つ点に相当する)での自動イオン化が主たる寄与を占めることになる。従って自動イオン化構造は、斥力壁上の位置Rにおける超励起状態とイオンとのポテンシャルエネルギー $(V^*(R), V^*(R))$ の差に等しい電子運動エネルギーにおいて顕著に現れる。このため図6に示すように上準位、および下準位のポテン

シャル曲線の斥力壁の傾きの違いを反映して光電子の運動エネルギー変化が生ずる。このようにして光子エネルギーによってきまるRでの反発的な超励起状態のポテンシャル曲線の情報が得られる。

光子エネルギー25eV以上の領域では、光電子エ ネルギーが0.8eV, 1.1eV, 1.5eV において縦軸 に平行な強調構造が光電子スペクトル曲面に現れ ている。これらはすべて解離断片の窒素原子が自 動イオン化し基底準位の原子イオンを生じたものに 対応する。(原子の自動イオン化によって生じる光 電子の運動エネルギーは、光子エネルギーに対し て変化しないため、このような縦軸に平行な強調 構造を生ずる。しかし右上がりに励起関数を測定 していく一次元CISスペクトルでは、5.2で述べた ような、分子イオン生成における偶発構造としか 同定されないであろう。) 窒素イオンの第一解離極 限(図3のDI_s)は24.3eVであり、これ以上の励 起エネルギーを与えられて生じた超励起状態が, 相関する解離極限において断片原子のIP以上の内 部エネルギーを持つ原子の自動イオン化状態(い わば "超励起原子")を生成する中性解離過程を, 原子の自動イオン化スペクトルとして観測してい ることに対応する。したがってこれらは4節に示 した中性解離閾値を結ぶ曲線①の延長(図5では直 線として現れる)上で出現する。これらは図3の発 光スペクトルではほとんど観測されておらず収束 構造となっていたことは4.2で述べた通りである。

以上のようなダイナミックスについて、光電子スペクトル曲面から斜め方向に切り出したCISスペクトルをたった一枚測定してもこのような現象を判別することは不可能であろう。その意味で、以上二つの例は光電子分光が電子遷移を静止場で扱うにとどまらず、二次元測定により励起分子の核運動の関与する反応ダイナミックス研究の領域に踏み込み、その重要な手段となったことを示すものである。しかしこの測定で分かることは、極紫外領域には反発的なものを含めると超励起状態が存在しない領域などないということであり、共

鳴光電離の寄与を完全に除き去ることは困難であるということである。ここに現れた反発状態は4節で述べた反発的なポテンシャルを持つ多電子的イオン状態³⁵⁾ に電子が束縛されたものと考えられるため、むしろここに示した二次元光電子スペクトルの量子化学的な解析から、イオン終状態および超励起状態のポテンシャル構造を明らかにすることが必要であると思われる。

6. おわりに

以上,本稿では発光および光電子の二次元スペクトル測定について紹介した。これらのスペクトルは超励起状態およびイオン状態もしくは解離状態,そして相関の生じている領域でのポテンシャル構造を一目で鳥瞰させ,多チャンネルの超励起状態と多チャンネルの終状態とを物理的に接続す

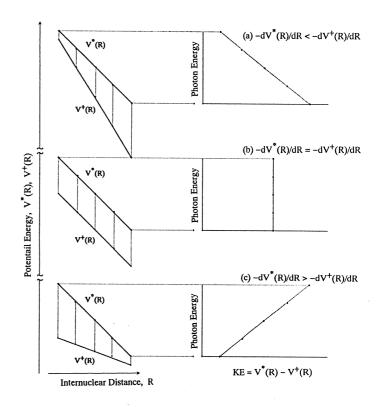


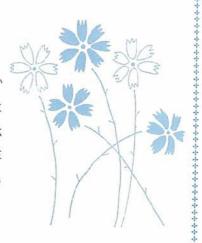
Fig.6 Schematic picked-up potential curves of a repulsive superexcited state (V*(R)) and a bound ionic state (V*(R), only inner wall) and behavior of resonance enhanced photoionization yields against photon energy. Cases (a)-(c) are categorized by the derivatives of potential curves relative to internuclear distance.

る "相関マトリックス"を視覚的に表現したものとなっている。またこのようなスペクトルが状態間のみならず終状態における核運動をも含めた系のダイナミックスを考える上できわめて重要な視点を与えていると言うことができる。つまり、本稿で紹介した多パラメーター測定が一次元スペクトルを羅列したものとは本質的に"次元"の異なる情報を提供している点を強調したい。これによってこれまで情報がきわめて限られていた高エネルギー超励起状態についての知見を飛躍的に増大させることができると期待される。勿論、このような多パラメーター測定は本稿で紹介したものに限るものではなく、さらに今後の展開が期待される。

謝辞

本稿で紹介した二次元発光励起スペクトルは町田俊太郎、北島昌史、亀田幸成、河内宣之、簇野嘉彦(以上、東工大)、早石達司(筑波大)、伊藤健二(高工研)各氏との共同研究によるものであります。二次元光電子スペクトルは A. A. Wills, D. Čubrić, J. Comer(英国マンチェスター大学)各氏との共同研究によるものであり、文部省科研費国際学術研究「原子衝突の実験的研究」(代表者:都立大、小林信夫)の下に行われました300。以上、記して謝辞とします。

文献


- R. L. Platzman, Vortex, 23, 372(1962); Radiat. Res., 17, 419 (1962).
- 2) Y. Hatano, "Dynamics of Excited Molecules", ed. K. Kuchitsu (Elsevier, Amsterdam, 1994), chapter IV.
- 3) I. Nenner and J. A. Beswick, "Handbook of Synchrotron Radiation" vol.2, ed. G. V. Marr (Elsevier, Amsterdam, 1987) p. 355.
- 4) 鵜飼正敏, 化学と工業 42, 215 (1989).
- 5) 鵜飼正敏, SR科学技術情報, 3, 2(1993); 放射線化学, 57,13 (1994).
- 6) J. Berkowitz, "Photoabsorption, Photoionization, and Photoelectron Spectroscopy" (Academic, New York, 1979).
- 7) J. W. Gallagher, C. E. Brion, J. A. R. Samson, and P. W. Langhoff, J. Phys. Chem. Ref. Data 17, 9 (1988).
- 8) 井口道生, 日本物理学会誌, 22, 196 (1967).
- 9) U. Fano, Phys. Rev. 124, 1866 (1961).
- 10) K. Kameta, M. Ukai, T. Numazawa, N. Terazawa, Y. Chikahiro, N. Kouchi, Y. Hatano, and K. Tanaka, J. Chem. Phys., 99, 2487 (1993); および亀田幸成,放射線化学 54, 10 (1992) に近年の著者らの多原子分子の光イオン化量子収率測定についての文献が多数引用されている。
- D. A. Shaw, D. M. P. Holland, M. A. MacDonald, A. Hopkirk, M. A. Hayes and S. M. McSweeney, 166, 379 (1992).
- 12) 最近の高分解能光イオン化量子収率の測定には,この他,文献11と同一の著者らによる以下の報告がある。J. Phys. B **25**, 4823 (1992); Chem. Phys. **163**, 387 (1992); **173**, 315 (1993).
- 13) H. Nakamura, J. Phys. Chem., 88, 4812 (1984).
- 14) G. Wendin, Intern. J. Quant. Chem.: Quant. Chem. Symp., **13**, 659 (1979).
- 15) G. Wendin, Comments At. Mol. Phys., 17, 115 (1986).
- 16) M. Ya. Amusia, "Atomic Photoeffect", (Plenum, New York, 1990).
- 17) V. Schmidt, Rep. Prog. Phys., 55, 1483 (1992).
- 18) P. Fulde, "Electron Correlation in Molecules and Solids", (Springer, Berlin, 1991).
- 19) P. Lablanquie, "Electronic and Atomic Collisions" (AIP, New York, 1992) p.507.
- 20) S. Arai, T. Yoshimi, M. Morita, K. Hironaka, T. Yoshida, H. Koizumi, K. Shinsaka, Y. Hatano, A. Yagishita, and K. Ito, Z. Phys. D 4, 65 (1986); S. Arai, T. Kamosaki, M. Ukai, K. Shinsaka, Y. Hatano, Y. Ito, A. Yagishita, K. Ito, and K. Tanaka, J. Chem. Phys., 88, 3016 (1988).
- 21) M. Ukai, K. Kameta, N. Kouchi, Y. Hatano, and K. Tanaka, Phys. Rev. A 46, 7019 (1992).
- 22) M. Ukai, K. Kameta, S. Machida, N. Kouchi, Y. Hatano, and K. Tanaka, J. Chem. Phys., in press.
- 23) M. Ukai, N. Terazawa, Y. Chikahiro, K. Kameta, N. Kouchi, Y. Hatano, and K. Tanaka, Phys. Rev. A 45, R15 (1992).
- 24) M. Ukai, S. Machida, K. Kameta, M. Kitajima, N. Kouchi, Y. Hatano, and K. Ito, Phys. Rev. Lett., submitted.
- 25) M. Ukai, K. Kameta, R. Chiba, K. Nagano, K. Shinsaka, N. Kouchi, Y. Hatano, H. Umemoto, Y. Ito, and K.

- Tanaka, J. Chem. Phys., 95, 4142 (1991).
- 26) M. Ukai, N. Kouchi, K. Kameta, N. Terazawa, Y. Chikahiro, Y. Hatano, and K. Tanaka, Chem. Phys. Lett., 195, 298 (1992).
- 27) M. Ukai, K. Kameta, N. Kouchi, K. Nagano, Y. Hatano, and K. Tanaka, J. Chem. Phys., 97, 2835 (1992).
- 28) なお"イオンを生成しない超励起状態"の前期解離過程には中性解離ではなく正負イオン対生成過程という"イオンを生じるイオン化ではないチャンネル"が存在し、これを観測する方法は中性解離同様に、微弱ながらきわめて鋭敏な超励起状態の分光法である。 K. Mitsuke, S. Suzuki, T. Imamura, and I. Koyano, J. Chem. Phys., 92, 6556 (1990); 93,1710 (1990); 93,8717(1990); 94,6003(1991); 95,2398 (1991); 96,7500 (1992).
- E. W. Plummer, T. Gustaffson, W. Gudat, and D. E. Eastman, Phys. Rev. A 15, 2339 (1977).

- A. A. Wills, A. A. Cafolla, and J. Comer, J. Phys. B24, 3989 (1991).
- A. A. Wills, D. Čubrić, M. Ukai, F. Currell, B.J. Goodwin, T. Reddish, and J. Comer, J. Phys. B 26, 2601 (1993).
- D. Čubrić, A. A. Wills, J. Comer, and M. Ukai, Phys. Rev. Lett. 71, 983 (1993); J. Phys. B 26, 3081(1993).
- 33) M. Ukai, S. Machida, K. Kameta, M. Kitajima, N. Kouchi, Y. Hatano, T. Hayaishi, and K. Ito, to be published.
- 34) K. Codling, Astrophys. J., 143, 552 (1966)
- M. Hiyama and S. Iwata, Chem. Phys. Lett., 211, 319 (1993).
- M. Ukai, A. A. Wills, D. Čubrić, and J. Comer, J. Phys. B to be published.
- 37) 鵜飼正敏,放射光,5,73 (1992)

秋 桜

コスモスの別名で秋に咲く桜ということで呼ばれています。いかにも日本的に聞こえますが原産地はメキシコです。ギリシャ語では飾るとか美しいという意味で、英語では宇宙、調和ということを示しています。 キク科コスモス属の一年草ですが、こぼれ種が翌年花をつけるので宿根草なみに楽しめます。秋には台風の上陸が多いので、風で倒れないように支柱をお忘れなく。(K. Ohsima)

