世界のXFELの展望とSACLAの現状と高度化の方向性

理化学研究所 大竹雄次、XFEL研究部門を代表して

●世界のXFELの展望 ●SACLAの現状

高度化の方向性

世界のXFEL施設 (稼働中、建設中および計画中)

SCSS-

SACLA

SINAP FEL

EURO XFEL PSI XFEL FLASH PSI XFEL FERMI ELETRA Soft X-ray

稼働中X-ray laser : SACLA, LCLSSoft X-ray建設中X-ray laser : Eruo XFEL, PSI XFEL, PAL XFEL計画中X-ray laser : Los Alamos XFEL (MaRIE)稼働中Soft X-ray laser : Flash, FERMI建設中Soft X-ray laser : SINAP FEL

XFELの性能

	SACLA (稼働)	LCLS (稼働)	EURO-XFEL	PAL-XFEL	PSI-XFEL
X線の最大エネルギー(keV)	14.5	9.5	24.8	12.4	12
電子の最大エネルギー(GeV)	8.2	14.5	17.5	10	5.8
電子の尖塔電流(kA)	>3~4	3~5	5	2~4	1.5~2.7
電子ビームパルス幅(fs rms)	< 30	10 ~ 300	10 ~ 100	< 60	13
Peak Brightness @ 10keV (Photon/s/mm^2/ mrad^2/0.1% bandwidth)	2x10E33	8x10E32	5x10E33	1x10E33	3x10E32
Pulse Energy/Pulse	0.5 mJ @ 10keV	2.1 mJ @ 9.5 keV	2.2 mJ (設計) @ 12.4 keV	1.8 mJ (設計) @ 12.4 keV	0.06 mJ (設計) @ 12.4 keV
Pulse repetition (Hz) (Shots/pulse, Sh/p)	<mark>60</mark> 1 sh/s	120 1 sh/p	10 2700 sh/p	60 1 sh/p	100 1 sh/p
K Value	1.5~2.2	2.5	3.3	1.3~2.1	0.85
加速空洞	Cバンド	Sバンド	超伝導 (Lバンド)	Sバンド	Cバンド

各XFEL施設のレーザー輝度

Springer Tracts in Modern Physics Volume 258 2014 Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 2nd Ed, Physical Principles, Experimental Results, Technical Realization から引用。

計画中の(Soft)XFELの性能(設計)

	LCLS-II (NGLS)	MaRIE (LANL)
X線の最大エネルギー(keV)	1.24	41.3
電子の最大エネルギー(GeV)	2.4	12
電子の尖塔電流(kA)	0.6	3.4
電子ビームパルス幅(fsrms)	1 ~ 300	< 30
Peak Brightness @ 10keV (Photon/s/mm ² /mrad ² /0.1% bandwidth)	8x10E32	5x10E33
Pulse Energy/Pulse	0.1 mJ @ 9.5 keV	0.3 mJ @ 12.4 keV
Pulse repetition (Hz)	連続波	120 ?
K Value	1.4	0.86
加速空洞	超伝導(Lバンド)	Xバンド

高ディユーティー・高エネエルギーX線(?)への指向

NGLS (LCLS-II)の例

電子ビームのバンチ構造

Experiment Hatches

CW リニアックでたくさんのビームラインを駆動。 そのための大きな障害となるのは電力である。 だから、超伝導CWリニアックを使用する。

SACLAの現状と高度化

ユーザー実験の再現性のために

- SACLAの概要、現状
- X線レーザーの出力強度、波長範囲、安定性、パルス幅
- レーザーの強度安定性を向上するための機器の安定化(環境影響排除)
- 空洞の温度制御、湿度制御
- 高周波時間基準信号ライン用ファイバーの光路長制御
- バンチ圧縮のためのバンチ長制御

SACLAの高度化

(シングルユーザーマシンを超えて、より柔軟にユーザーの要求に対応するために)

- BL3でのセルフシーディング
- 新規X線ビームライン増設, BL2.
- マルチビームラインに対応したビームのパルス振り分け
- SCSSのSACLA光源棟への移設による(SCSS+)、既存ビームラインBL1の能力向上
- 加速器の高電界化および高繰り返し化(将来に向けた開発)

SACLAの現状

SACLAの機器構成

SACLAは、500kV低エミッタンス(<1mmmrad)パルス電子銃とCバンド高電界(37MV/m)、短周期(K~2,2)真空封止アンジュレータにより構成されている。

In-vacuum undulators

SACLAの現状性能

SASE 強度安定性

Pointing stability @実験ハッチ1

Spectrum stability

X線パルスエネルギーの増加 from 2013 to 2014

- X線レーザーの出力強度は、増加傾向にある。0.5 mJ
 @ 10 keVにまで到達。
- 典型的なバンチ長 <15 fs (FWHM), RF デフレクター
 での測定 (測定精度 ~12 fs エミタンスにより制限)

SACLAの安定化

現状の安定性は、次の例に示す性能向上策などで実現。

高周波空洞の精密温調制御系

SACLA建設当初の精密温調系の性能(100mKの安定度)は不十分だったので、改良した。

入射部の空洞には高度な温度安定性が要求される。この理由から、2次冷却水 系には10 mK に及ぶ恒温性を確保するために、精密温調制御装置が設置され ている。また、温調用ヒータ電源をDC化して、ヒータ電流変化によるビーム軌道 キックを低減した。

高周波空洞精密温調装置 の温度制御性能

238 MHz-SHBの場合を示す。空洞に入力される冷却水の温度は、10 mK以内に制御されている。これにより空洞の高周波位相は、0.07度以内に収まっている。

加速器高周波基準信号光ファイバー伝送ラインへ の湿度変化の影響(クライストロンギャラリー)

最近の湿度制御の改善で、これくらいには 収まっていまる。

T. Ohshima et al., Proc. of the 11th PASJ, (2014), in Japanese.

ファイバ往復位相 露点変動の影響は見られている

光ファイバー長制御装置

マイケルソン干渉計を使用した、粗調と微調のファイバー長測定装置建設している。

微調の測長制御は、 λ_0 (1548.96 nms) の光波長を基準としている。粗長の測長基準は、 光の波長 λ_2 (1552.15 nm) and λ_3 (1552.89 nm)の差周波である45 GHzを使用している。

安定化している光ファイバー長は、1500mである。実験室でデータ。

現在、SACLAの実機でもファイバー長制御が実働しており、ファイバー長制御ループの外の変動も含めてSACLAの高周波時間基準ラインの安定度は、50fs p-p程度に安定化されている。 H. Maesaka et al., Proc. of IPAC14, 1906 (2014).

電子銃 入射部空洞群 ビーム位置モニター Sバンド空洞群

ビーム到着時間モニター CSRバンチ長モニター

電子ビーム

BC1の前後にある電子ビームモニターにより、ビームの到着時間、エネルギー、バンチ幅を 測定して、入射部高周波空洞群の高周波位相などに帰還制御する。それにより電子ビーム のバンチ幅ほかを、安定化してX線レーザーの強度変動を少なくする。

電子ビームのモニターを使用した帰還制御 によるバンチ幅・強度の安定化の結果

● BC1部モニターを使用した入射部高周波空洞の位相への帰還制御の実験を行った。帰還制御部はコンピュータ上に構成された。現状で12時間くらいは、運転員が調整せずにX線レーザーの強度をある程度一定に保持できる場合もある。本システムは、現在、SACLAで稼働中である。

SACLAの高度化

多くのユーザーに、より使いやすいX線レーザーを供給するために。

SACLAの高度化のための増強装置

セルフシーディング(前方ダイアモンド結晶回折、FDB)

● DESY の G.Geloni, V. Kocharyan & E. Saldin, J. Mod. Opt. 58, 1391 (2011) により提案

LCLS J. Amann, et. Al., Nat. Photonics 6, 693 (2012) により実証

ダイアモンド結晶チェンバー

20回転アーム

回折モニター(Photo-diode & CCD) / Be 窓

遠隔操作多軸ステージ(x,y,z,Ry,θ)

シードFELの発達

アンジュレータのギャップを閉じると、シード光が発達する。

シード結晶下流の アンジュレータの台数

100ショット積分した シード光のスペクトル

下流 6-13

結晶

上流4

アンジュレータ

100 ショット積分したシード化されたレーザーのスペクトル

● ピーク強度: SASEのバックグラウンドより4倍

結晶真空容器上流の4 アンジュレータでシード 光を発生。 下流の13アンジュレー タでシード化されたX線 レーザーを発生。

シケインでの電子ビーム のシード光に対する遅延 は20 fs。

BL-2とSCSS+の建設状況

この夏に18台のアンジュレータを含んだBL2 と 2番目のリニアック(SCSS+)を設置した。

現在、BL-2はコミッショニング中、 レーザー増幅を確認 (細かいデータは追って別の発表で)

BL2の性能

Number of undulators	18
Undulator length	$5 \mathrm{m}$
Number of periode (undulator)	277
Minimum magnetic gap (undulator)	< 3.5 mm
Maximum K vale (undulator)	< 2.2
Effective length of the beam line	$\sim 70 \text{ m}$
Output wave length	~ 0.1 nm
Electron beam energy	$\sim 8.5 { m ~GeV}$
Electron focusing	FODO
Use self seeding scheme	

SCSSとSCSS+の性能比較

	SCSS	SCSS+			
Operation period	$2005 \sim 2013$	$2015 \sim$			
Accelerator					
Beam energy	$250~{ m MeV}$	$420 { m ~MeV}$			
Bunch charge	~0.3 nC	~0.3 nC			
Peak current	~300 A	~500 A			
Repetition	60 pps (max.)	60 pps (max.)			
Undulator					
Periodic length	$15~{ m mm}$	18 mm			
K parameter	1.5 (max.)	2.1 (max.)			
Photon Beamline					
Wavelength	50-60 nm	30-40 nm			
Pulse energy	10-30 µJ/pulse	100 µJ/pulse			

SACLAにおける複数ビームラインへの時分割出射 異なったビームラインへの異なったエネルギーでの電子出射 Trigger Trigger ビームルート切り替え BL2 BL3 Trigger Trigger Trigger Exp Undulator 2 acc1 acc2 pulse mag hutch 2 AC Exp accelerator Undulator 3 mag hutch 3 SPring8-II storage ring ← trigger 電子ビーム 定常的なリングへの入射は、近い将来の課題 Master trigger acc1 acc2 Pulse mag BL₃

BL₂

SACLAにおける2 エネルギービーム実験結果

更なる未来のために

当面の実施計画はないが

多くのユーザのための、装置の高繰り返し・コスト削減のための高電界加速。

50MV/m、120 pps 試験大電力高周波源開発

50MV/m、120 pps 試驗大電力高周波源実驗結果

まとめ

- 大竹の私見としては、世界のXFEL(軟X線も含む)は高繰り返しで、多数のユー ザー(マルチビームライン)に同時に対応できるような方向に進みつつある。
- もう一方の流れとしては、X線の高エネルギー化もあるかもしれない。
- 現状の稼働中や建設中の装置を見ると、より小型化・低コスト化は既定路線。
- SACLAのユーザー運転は、機器の安定化などにより4~8時間程度は無調整 でレーザーを供給できようになっている。ユーザー運転を順調にこなしている。

SACLAの高度化

- シード化でX線レーザーの時間方向の単色化を進めている。
- BL-2の増設やSCSS+の建設、時分割での電子ビームの振り分けで、多数の ユーザーが同時に実験が可能なように進めている。
- 更なる将来を目指して、現状では実施計画は無いが、60ppsから120pps、更に 上に行くような高電界・高繰り返しのCバンドリニアックの開発を進めている。