放射光科学30年の歩みと展望

X線共鳴散乱による磁性研究

有馬孝尚

東京大学新領域創成科学研究科物質系専攻 千葉県柏市柏の葉 5-1-5 理化学研究所創発物性科学研究センター 埼玉県和光市広沢 2-1

物質中の磁気モーメントがX線の散乱源となることは30年以上前から指摘されており、また、内殻電子の励起に 相当するエネルギー近傍で共鳴増大を示すことも古くから明らかになっていた。一方で、共鳴X線散乱が実際の 磁性研究に役に立った例はまだそれほど多くない。真の有効利用が進むためには、類似の磁性研究手法である中性 子散乱と比較した際の特徴を理解する必要がある。共鳴X線散乱の特徴を考えると、5d 遷移金属やランタニド化 合物が重要なターゲットになるはずである。また、今後の大きな方向性として、イメージングや時分割測定を組み 込んだ形の8次元観測を目指すべきであろう。

1. はじめに

要旨

日本放射光学会が設立された1988年を振り返ってみま しょう。前年に Bednorz と Müller がノーベル物理学賞を 受賞しています。1988年になると金属材料技術研究所の 前田氏が初めて100 K を超える超伝導を報告しています。 このように、1988年は日本全体がバブル経済に浮かれる 中で、物理の世界は超伝導フィーバーの真っただ中でし た。高温超伝導の研究では、超伝導と磁性の関連が興味の 中心となりました。超伝導と磁性の関係性については、す でに, UBe₁₃ や UPt₃ などの重い電子超伝導体が発見され たころから指摘されていました。しかし、銅酸化物では、 反強磁性体へキャリア注入した結果高温超伝導が生じたと みなせるだけに、大きなインパクトがあったのです。高温 超伝導体の磁性の研究は、磁化測定と微視的な計測を組み 合わせる形で進められました。微視的な計測の代表が、核 磁気共鳴/緩和 (Nuclear Magnetic Resonance/Relaxation: NMR) や中性子散乱でした。

その当時のX線による磁性研究はどのような状態だっ たのでしょうか。私はその現場にいたわけではないのです が、X線磁気散乱はかなり以前に観測されており¹⁾, 1988 年には、すでに共鳴増大が予測、観測されていたようで す²⁻⁴⁾。もし、X線磁気散乱が本当に役に立つ測定法であ ったなら、大きな単結晶を作るのが難しかった高温超伝導 体の研究において、大活躍していたことでしょう。しか し、実際は違いました。NMRや粉末中性子回折のほうが 役に立ったのです。X線磁気散乱は「中性子で見られる 磁気超格子反射が放射光でも観測できる場合がある」とい う状態でした。

現在,磁性研究において最もよく利用される放射光 X 線測定は X 線磁気円二色性 (X-ray Magnetic Circular Dichroism: XMCD) でしょう。XMCD の観測が報告され

たのは、X線磁気散乱より遅く、放射光学会設立の前後 のようです^{5,6)}。磁化を持つ物質によるX線吸収は、左右 円偏光に対して異なります。これが XMCD です。XMCD は磁性イオンの吸収端で共鳴的に増大します。このような XMCD の有する元素選択的な磁化情報や、スペクトル解 析によるスピン角運動量と軌道角運動量の区別などの特徴 を活かした磁性研究が 3d 遷移元素を含む強磁性体につい て行われています。さらに、近年では、スピンエレクトロ ニクスの降盛に伴って,スピン分解角度分解光電子分光 (スピン分解Angle-resolved Photoemission Spectroscopy:スピン分解ARPES)の重要度が増していま す。半導体の教科書では、電子のスピンはエネルギー固有 値には無関係で単に縮退度に寄与するのみでした。しか し、スピン軌道相互作用に基づくスピン分裂が様々な固体 で重要視されるようになったことから、スピン分解 ARPES が重要な測定ツールとしての地位を確立しつつあ ります。

さて、本稿における主題は、XMCD やスピン分解 ARPES ではなく、X 線共鳴散乱による磁性研究です。高 温超伝導体研究でわき役であった X 線共鳴磁気散乱が、 その後どのように発展したのかを振り返ったうえで、将来 展望について個人的な見解を述べます。4 年ほど前に本学 会誌に「硬 X 線を用いた強相関電子系の構造物性研究」 というタイトルで記事を書かせていただいており⁷⁾重なる 部分も多いとは思いますが、ご容赦いただければ幸いです。

2. X線共鳴磁気散乱の特徴

X線共鳴散乱の将来像を考えるにあたっては,まずその特徴を把握する必要があります。特に,中性子散乱との 比較は重要です。電子による電磁波の散乱過程は,電子の 個性(運動量,エネルギー,スピンなど)に依存しないも

のと、依存するものに分けることができます。後者は、電 磁波の光子エネルギーが電子の励起エネルギーに近づくと 増大します。これを共鳴散乱と呼びます。X線の光子エ ネルギーは数百から数万 eV と大きいため、内殻原子軌道 と非占有の電子軌道の間の電子遷移と共鳴することになり ます(Fig. 1)。これが X 線共鳴散乱です。ここで, X 線の 光子が±ħのスピン角運動量を有していることに注目しま す。電子が励起された散乱の中間状態では、最初の状態と 比べて物質の角運動量がれ変化することになります。特 に、円偏光X線が入射した場合は、そのヘリシティによ って角運動量が増えるか減るかが決まります。ある原子サ イトでの散乱を考えると,始状態でその原子の角運動量が ゼロであれば、中間状態で角運動量が増える過程も減る過 程も同様に生じますが、始状態の角運動量がゼロでなけれ ば,中間状態で角運動量が増える過程と減る過程とでは確 率や位相が異なることが予想されます。これはちょうど強 磁性体における XMCD の原理と共通しています。強磁性 体では、特定の構成元素が平均としてスピン角運動量や軌 道角運動量を有しています。円偏光 X 線の持つスピン角 運動量は、強磁性体の角運動量を増やすか減らすかのいず れかの作用を有することになるため,左右円偏光でX線 の吸収強度が異なります。さらに、吸収スペクトルが異な る結果,屈折率のスペクトルにも左右円偏光で差が生じま す。この効果はX線のファラデー回転(磁気旋光)とし て観測されます。

強磁性体における左右円偏光のX線に対する応答の差 は、X線の吸収や透過だけではなく、X線の散乱にも反 映されます。実際、強磁性体のブラッグ散乱では、左右円 偏光で強度差が生じますし,散乱面に平行や垂直の直線偏 光を持つX線が入射した場合に,散乱X線の偏光が回転 する現象もみられます。共鳴磁気散乱は反強磁性体でも生 じます。物質中の角運動量の配列が原子の周期と異なる場 合は,磁気超格子が作る反射が新たに生じます。

このように考えると、中性子散乱と共鳴X線散乱の共 通点と差異が明らかになります。まず、両者とも、磁気 モーメントの空間変化や時間変化のフーリエ変換に相当す る散乱成分を有します。しかし、観測しているものは両者 で同じではありません。中性子の磁気散乱は、双極子双極 子相互作用によって説明されます。すなわち、物質中の磁 束密度の空間分布や時間変化を直接観測しています。一方、 X線の共鳴磁気散乱は、電子の非占有軌道の空間・時間 構造を、内殻軌道からの励起によって観測しています。し たがって、中性子散乱が磁気モーメントの空間・時間構造 の定量的な解析に向いているのに対して、共鳴X線散乱 は、スピン角運動量や軌道角運動量を含む波動関数の空間 ・時間構造の情報を得るのに適しているのです。

3. X線共鳴磁気散乱の利用の現状

3.1 3d 遷移金属

磁性体の研究の主役は、3d 遷移金属、およびその化合物です。3d 遷移元素における内殻の構造は(1s)²(2s)²(2p)⁶(3s)²(3p)⁶となっており、価電子・伝導電子は主に 3d 軌道と4s 軌道を占有します。硬X線領域に対応する電子励起は1s 電子の励起であり、いわゆるK吸収端のエネ ルギー付近で共鳴します。しかし、K吸収端のX線共鳴散

Fig. 1 Processes of resonant X-ray scattering at L₃ edge on a transition metal ion. (a) A 2p electron is excited to a valence state by x-ray irradiation. (b) The excited electron emits an x-ray photon and returns back to the core level (elastic scattering). (c) Another electron is relaxed to the core level by emitting an x-ray photon (inelastic scattering).

乱は、磁性研究にはほとんど使われません。その理由は、 二つあります。一つ目は、3d価電子への励起の振動子強 度があまり大きくないことです。電磁波による電子励起の 主要項は電気双極子遷移ですから、1s内殻電子がX線を 吸収すると主にp軌道へと遷移します。一方、価電子や伝 導電子の主要な成分は3d軌道や4s軌道ですから、大きな 共鳴増大を示さないのです。もう一つは、s電子が軌道角 運動量を持たないことです。3d遷移金属やその化合物の 磁性体では、多くの場合、価電子状態の軌道角運動量が凍 結しています。始状態も中間状態も角運動量を有さないの であれば、光子の角運動量が増える過程と減る過程はほぼ 等価な確率で生じるでしょう。すなわち、左右円偏光の吸 収の差はあまり期待できないのです。

筆者らのグループは、3d 遷移金属の K 吸収端における 共鳴散乱を利用した少し変わった磁性研究として、対称性 の低いサイトに位置する 3d 遷移金属のスピン状態の観測 を試みてきました^{8,9)}。遷移金属が4つの陰イオンに正四 面体的に囲まれる状況は頻繁に現れますが、このサイトは 明らかに空間反転対称性を有しません。この場合、価電子 波動関数の 3d 軌道に p 軌道成分が混ざるので, 1s 内殻状 態からの電気双極子遷移を顕わに考えることができます。 この電気双極子遷移と3dへの電気四極子遷移の干渉効果 は基底状態の電子スピンの方向に依存します。この効果 は、局所的な極性とスピンが生み出すトロイダル、あるい は,磁気四極子の観測方法として利用することが可能で す。私たちはこの点に注目し、スピネル構造を有する酸化 物 Fe₃O₄ や MnCr₂O₄の磁気共鳴散乱の測定を行いまし た。これらの物質の四面体サイトを占める Fe イオンや Mn イオンのもつ磁気モーメントの向きは、フェリ磁性相 において一方向に揃います。一方、四面体の向きは隣り合 う四面体ごとに逆向きとなります。よって磁気モーメント と空間反転対称性の破れ(正確には電気八極子)の「積」 であるトロイダルや磁気四極子も、反強的に整列し、共鳴 磁気散乱を生じることが期待され、実際に磁場変調法によ り観測することができました^{8,9)}。

1s 軌道の次に位置する軌道は2s 軌道となります。2s 軌

道からの励起は、軟X線の領域に入り波長が長くなる以 外は、K吸収端の共鳴効果と同じような特徴を有しま す。波長が長くなると、ブラッグの法則を満たすことが難 しくなるだけで、利点はあまりありません。したがって、 L_1 吸収端の共鳴効果を利用した共鳴散乱研究の例はほぼ 皆無です。

価電子の波動関数の主な構成要素である 3d 軌道や 4s 軌 道への遷移確率が大きい内殻軌道は, p 軌道となります。 2p 軌道からの電子励起は軟 X 線領域に位置します。また, 3d 遷移元素の 2p 軌道は10 eV を超える大きなスピン軌道 相互作用を有するため、全角運動量」が良い量子数となり ます。励起状態の (2p)5は、J=3/2とJ=1/2に分裂し、 それぞれの光子エネルギー位置(L₃, L₂ 吸収端)での共鳴 効果が期待されます。また、内殻軌道側でスピンと軌道が 結合しているため、価電子のスピン角運動量が0でなけ れば, 左右円偏光 X 線での励起強度に大きな差が生じま す。このことが、大きな XMCD を生じさせています。同 様に,共鳴X線磁気散乱も十分強いものとなります。た だし、共鳴エネルギーに対応する波長は10Åを超えてお り、ブラッグの法則を満たす面間隔はかなり長いものに限 られます。遷移金属やその化合物の磁性体でそのような面 間隔を持つ磁気秩序はあまり多くありません。その点が, 共鳴X線磁気散乱の適用範囲を狭めています。

周期の長い磁気超構造の観測には、L₃、L₂吸収端にお ける共鳴磁気散乱を利用することが可能です。このことか ら、筆者らのグループは近年、共鳴小角散乱を磁気スキル ミオンと言われる10 nm 程度の磁気構造体の観測に用いて います¹⁰⁾。磁気スキルミオンとは、二次元強磁性体中の 局所的な欠陥¹¹⁾で、第二種超伝導体の渦糸と同じように 三角格子を組みやすいことが知られています^{12,13)}。三角格 子状態について共鳴軟 X 線散乱実験を行うと、小角散乱 領域に Fig. 2 に示すような磁気超格子が明瞭に観測される のです。

Fig. 2 (a) Magnetic skyrmion. (b) Magnetic superlattice reflections in the magnetic skyrmion triangular lattice phase observed by small-angle resonant soft x-ray scattering. Excerpt from Ref. 10).

3.2 ランタニド

ランタニドおよびその化合物は、らせん磁性、永久磁 石,磁気光学材料,重い電子系など特徴のある磁性や物性 機能を示すため、古くから磁性研究の対象となってきまし た。ランタニド元素における内殻の構造は (1s)²(2s)² $(2p)^{6}(3s)^{2}(3p)^{6}(3d)^{10}(4s)^{2}(4p)^{6}(4d)^{10}(5s)^{2}(5p)^{6}$ となっ ており、価電子・伝導電子は主に4f軌道、5d軌道、6s軌 道を占有します。4f軌道は5s,5p軌道よりも内側に存在 する確率が高いため、一つの原子に局在した磁気モーメン トとして振舞うことが多いとされています。一方,5dや 6sが持つ磁気モーメントは小さなものとなっています。 したがって、ランタニドにおける磁性研究では、4f電子 の磁気モーメントの観測が重要になります。4f状態は, 通常,合成スピン角運動量 S,合成軌道角運動量 L,およ び全角運動量 J が良い量子数となります。最低エネルギー にある多重項は孤立イオンでは2J+1重に縮退しています が、物質中では周囲の原子や電子、および外部磁場からの 影響を受けて分裂し、磁性を担います。

ランタニド元素の場合,硬X線領域に対応するのは, 1s, 2s, および 2p 軌道からの励起となります。このうち, 1s や 2s 内殻軌道からの励起は 3d 遷移元素の場合と同じ ように利用しにくいものとなっています。これに対し, 2p 軌道からの励起,すなわち,L₃,L₂ 吸収端における X 線散乱は波長が 2 Å 程度と無機化合物の回折実験にちょ うど良く,さらに,かなり強い共鳴増大を示すことから, 磁気構造研究に用いることが可能です。中性子と比較し て,元素選択的な磁気配列情報が得られるという特徴を有 します。また,Gd,Eu,Sm など一部の元素において熱中 性子の吸収が強いことや,小さな単結晶でも実験ができる ことが,X線散乱法の有効性を相対的に高めています。

ここでは、私たちが行った EuMnBi₂の磁気構造解析を 例として示します¹⁴⁾。この物質は、Fig. 3 に示すように体 心正方晶の結晶構造を有し、単位胞内に4式量が存在し ます。EuのL₃吸収端における共鳴散乱実験を行ったと ころ、(00 ℓ) で ℓ が奇数の反射が系統的に観測されまし た。このことから、磁気秩序が体心の対称性を破っている ことがわかります。さらに、(00 ℓ) 磁気反射強度の ℓ 依存性から、磁気秩序パターンが決定されました。磁気 モーメントの向きについては、(0011) 反射と(401) 反射の偏光解析から c 軸方向を向いていることが明らかに なりました。このようにして、Euの磁気モーメントが Fig. 3 の矢印のように配列していることが分かりました。 このようにランタニド化合物の場合は、単結晶試料を用い た X 線磁気散乱によって磁気配列を決めることも可能で す。

一方で、2p 内殻軌道から4f軌道への電子遷移は本来電 気双極子禁制であり、 L_3 、 L_2 吸収端における共鳴散乱過 程は単純には理解できません。そのため、波動関数の特定 は非常に難しい状況です。また、エネルギー分解能も不足

Fig. 3 Crystal structure of EuMnBi₂. Arrows indicate the directions of Eu spin moments below 22 K analyzed by x-ray resonant scattering reported in Ref. 14).

しているので、多重項の分裂を決める際には中性子非弾性 散乱が用いられています。4f波動関数を決定するために は電気双極子遷移許容な3d内殻軌道の利用が考えられる ところです。しかし、3d内殻軌道からの励起は軟X線領 域に位置するため、ブラッグの法則を満たすことのできる 磁気秩序を示す物質はそれほど多くありません。したがっ て、 $M_{4,5}$ 吸収端の共鳴磁気散乱はそれほど利用されてい ません。

3.3 5d 遷移金属

近年、スピン軌道相互作用が強い物質が示す物性・機能 が注目を集めています。磁性分野でも、5d 遷移金属を対 象とした研究が盛んになっています。特に,Sr₂IrO₄にお ける J_{eff} =1/2状態の発見がその契機となりました¹⁵⁾。こ れに関しては、以前本誌でも報告した通り、イリジウムの L2.3 吸収端におけるX線共鳴磁気散乱が重要な役割を演 じました⁷⁾。2p内殻軌道から価電子状態の主成分である 5d 軌道への遷移は電気双極子許容であるため、磁気散乱 はL2.3 端で顕著な共鳴増大を示します。さらに、5d 遷移 金属のL吸収端は10 keV 程度のエネルギー位置にあるこ とから、対応するX線の波長は1A程度となり、無機固 体のブラッグ散乱に適しています。これらのことからX 線共鳴散乱による磁気構造の決定が容易になります。実際, $Sr_2IrO_4 O \not\equiv h$, $Sr_3Ir_2O_7$, $Cd_2Os_2O_7$, $CaIrO_3$, $Eu_2Ir_2O_7$ などの 5d 遷移金属酸化物の磁気構造は,共鳴 X 線散乱実 験によって決められました16-19)。

5d 遷移金属化合物における X 線共鳴散乱は,磁気構造 に関する情報だけでなく,5d 状態のスピン角運動量と軌 道角運動量に関する情報も与えてくれます²⁰⁾。これは, ちょうど,2p 吸収端の XMCD がスピン角運動量と軌道角 運動量の分離に用いられるのと同様の原理によっています。 Sr₂IrO₄ では,L₃ 吸収端で大きな共鳴増大が見られたのと 対照的に、 L_2 吸収端ではほとんど共鳴増大が見られません。このことから、6 つの酸素に囲まれた Ir^{4+} イオンが近似的に、スピンと軌道が結合した $J_{\text{eff}}=1/2$ と呼ばれる状態を取っていることが明らかになったのです。

磁気秩序が物質の対称性を破る場合は、必然的に二つ以 上の安定な状態が生じ、しばしば磁気ドメインが形成され ます。共鳴X線散乱はこのようなドメインの可視化にも 威力を発揮します。筆者らのグループは、ミラーを用いて 集光した円偏光X線の共鳴散乱を用いてCd₂Os₂O₇や Eu₂Ir₂O₇の反強磁性体のドメイン可視化に成功しまし た²¹⁾。これらの酸化物では、Os あるいは Ir は、正四面体 を構成要素とするパイロクロア型のネットワークを形成し ています。各正四面体の頂点に位置する4つの磁気モー メントは正四面体の中心を向く (all-in) か, あるいは正 四面体の外側を向く(all-out)かになっています。この all-in/all-out 型の磁気秩序は時間反転対称性を破っており, 2つの磁気安定状態が存在するため、反強磁性ドメインが 出現するのです。二種類のドメインで、共鳴散乱に存在す る磁気項と非磁気項の干渉の位相が反転するために、円偏 光X線回折顕微法によるイメージングが可能となったの です。

4. 将来展望

4.1 磁気励起の観測

ここまでは、X線を用いた静的な磁気構造について述 べてきました。物質の性質を知るためには、励起構造の研 究も欠かせません。磁性研究の場合も、磁気励起の観測は 大変重要です。磁気励起の観測において、現在の主役は、 中性子の非弾性散乱です。磁気モーメントの時間変化、例 えば、秩序状態であればスピン波励起の研究に用いられて います。非弾性中性子散乱に対応するX線の測定手法は 非弾性X線散乱です。非弾性散乱はさらに、非共鳴か共 鳴かに分けられ、この二つでは全く異なる装置が用いられ ます。磁性研究という観点からは、非共鳴の非弾性散乱の 信号は非常に弱いことが予想されるため、実際上用いられ る可能性があるのは、共鳴非弾性X線散乱(RIXS)とい

うことになるでしょう。すでに, Fig. 1に示したように, RIXS は、X線を吸収して内殻電子が励起される過程と、 空いた内殻準位への価電子の緩和に伴うX線の発光過程 の組み合わせとしてとらえることができます。始状態と終 状態を比べると、価電子が励起しています。磁気モーメン トの励起も価電子の励起の一種ですから、原理的には RIXS による観測が可能です。実際,高温超伝導体に関連 した銅酸化物系で銅のL3吸収端のRIXSが行われ、スピ ン波の分散関係が得られています²²⁾。とはいえ,X線の 光子エネルギーは 3d 遷移金属の L3 吸収端でも400 eV 以 上ありますので、100 meV の分解能を達成しようとする だけで、相対エネルギー分解能(E/AE)が4000を超える 必要があります。中性子非弾性散乱では、入射中性子のエ ネルギーを容易に meV オーダーとすることができるた め、単なるエネルギーの高分解能化では勝負になりませ ん。共鳴非弾性 X 線散乱は波動関数の励起, 例えば, 遷 移金属化合物における軌道励起波などの検出で活躍するも のと考えています。

では、磁気励起の観測には今後ももっぱら中性子が使わ れるのでしょうか。中性子の非弾性散乱では、大強度パル ス中性子源とチョッパー型の分光器の組み合わせにより, 移行エネルギーと移行運動量の4次元空間における大量 のイベントデータが取得されるようになりました。また, 現在でも非弾性散乱測定に中性子のスピン解析を組み入れ た実験は行われていますし,近い将来には,その技術が, チョッパー型分光器にも応用されると考えられます。これ らの方法で、各磁気励起における磁気モーメントの揺らぐ 方向を決めることができます。より低エネルギーの磁気励 起を観測するための中性子スピンエコー測定技術もさらに 進化するでしょう。したがって、通常の磁気励起の測定を わざわざ放射光を用いて行う利点はあまりないと考えられ ます。放射光の特性を活かすならば、レーザー光照射等の 瞬間的な外場印加や THz 電磁波の照射によって引き起こ される磁気励起を実時間軸上で観測するための時分割測定 の技術を高めるべきでしょう(Fig. 4)。放射光光源はパル ス中性子源と比べてパルス幅が大変短いため、現在でもピ コ秒以上のあらゆる時間領域での測定が可能です。可視・

Fig. 4 (Color online) Time-resolved x-ray scattering measurements of excitations induced by (a) pulse-laser irradiation and (b) ac field.

赤外光の測定分野では,すでに,波長の長いスピン波の伝 搬を時分割磁気光学イメージングで動画化する技術が開発 されつつあります²³。近い将来,放射光X線共鳴散乱の 時分割測定を用いて,反強磁性体の磁気ガンマ点や,強磁 性体のゾーン端などの波数の大きな磁気励起の伝搬の様子 が,動画として得られるようになるでしょう。

4.2 8次元観測

従来の物性物理学の主要な対象は結晶であり、空間的な 周期性と時間的な周期性を持つと近似できる場合が多く、 それに対応して、運動量(より正確には結晶運動量)とエ ネルギーを量子数と考える方法が有効でした。バンド計 算、角度分解型光電子分光、中性子非弾性散乱は、その典 型例です。20世紀の半導体技術は、まさに、そのような 固体物理学の成果の産物でしょう。しかし、高度に集積さ れた高速動作素子や、生物やソフトマター等に代表される エネルギー散逸系などの観測においては、位置と時間の特 定が必要となります。このような背景から、今後、放射光 の測定は、位置、運動量、時間、エネルギーの8次元空 間で行われるようになるだろうと予想しています⁷⁾。位置 と運動量、時間とエネルギーはフーリエ変換の関係にあり ますから、これで8次元というのは、理屈の上からは妙 な感じを受けるかもしれません。しかし、例えば、私たち が音楽を聴いているときは、明らかに、音(周波数領域情 報)の時間変化と捉えているのです。

典型的な8次元観測としては次のようなものが考えら れます。X線をミラーやゾーンプレートで微小領域に絞 りこむことで測定対象位置を特定し,また,放射光のパル ス特性を活かして時分割測定を行います。入射X線と散 乱X線,あるいは光電子の波数とエネルギーを測定する ことにより,物質との運動量とエネルギーの移行量が測定 できます。集光点と試料の相対関係やパルスのタイミング を掃引することで,空間変化や時間変化を測定することが できます。このような方法により8次元観測が可能にな ります。このような方法により8次元観測が可能にな ります。さらに,入射波と散乱波のスピン状態(偏光)の 解析を行うことにより,角運動量情報は,磁性研究にとっ て,大変重要です。

ただし、この観測方式では、位置や時間の軸に関する掃 引を行うため、全体としてはかなりの時間がかかることに なります。しかも、空間分解能や時間分解能を上げれば上 げるほど、全測定時間は増加していきます。必要な情報を どのように取得するかについて、これまで以上に吟味が必 要となります。

4.3 磁気イメージング

X線イメージングに関しては,青木先生と高橋先生が 専門家の立場から記事を書かれていますので,ここでは, 磁気イメージングに関する将来展望に簡単に触れます。磁 気イメージングは、磁化の空間分布の測定と、反強磁性の ドメイン分布の測定に分けられます。磁化の空間分布の測 定は、強磁性体の磁区の研究における需要が大きいため、 古くより様々な方法が行われてきました。放射光を用いる 方法としては、集光した X線による XMCD 顕微法や円偏 光励起による PEEM がすでに実用段階に達しています。 どちらも XMCD の応用となりますが、前者では入射 X線 の照射位置で空間分解を行うのに対し、後者では光電子の 放出位置で空間分解を行います。

これらに比べて,共鳴散乱を用いた磁気イメージングは まだまだ開発段階です。この分野の先駆けとなったのは, Eisebitt らによる軟X線磁気ホログラムです²⁴⁾。一般的 に,散乱パターンから実空間像を得るためには位相情報の 回復が必要となります。彼らは,参照孔からの回折との干 渉を用いて位相回復に成功しました。

筆者らのグループは,近年,参照孔の代わりにアパーチ ャーを用いて10 nm オーダーの磁気超構造のイメージング に取り組んでいます²⁵⁾。

一方,反強磁性体のドメイン構造のイメージングは比較 的最近の要請です。特に,21世紀に入り,マルチフェロ イクス(磁気強誘電体)の研究が盛んになるにつれ,ドメ イン壁の運動や,トポロジカルな欠陥が興味を持たれるよ うになっています。すでに述べたように,5d 遷移金属化 合物では,L吸収端における磁気散乱の共鳴増大を利用す ることで,集光ビームによる走査型のイメージングが行わ れています。ただし,集光ビームを用いる方式は,所要時 間が長く温度等の変動に弱いこと,時間・空間分解能を上 げようとすると放射線損傷の問題が深刻になることなど, 根本的な問題が存在します。集光ビームを用いないイメー ジングが可能であれば,それに越したことはありません。 反強磁性,あるいは,より一般的には電荷秩序等も含めた 移行運動量が大きな領域でのレンズレスイメージングは, 今後,大いに発展させるべき技術分野だと考えています。

5. 終わりに

本稿では、一部の物質において、X線共鳴磁気散乱が 中性子散乱と相補的に用いられるような役に立つ観測手法 になってきた現状を紹介するとともに、将来の方向性につ いて私見を述べました。特に、イメージングや時分割測定 を組み込んだ形の8次元観測へと移っていくことを期待 しています。

本稿は、多くの方々との共同研究から得られた知見に基 づいて書いたものです。特に、十倉好紀氏、大隅寛幸氏、 高田昌樹氏、高木英典氏、山崎裕一氏、Victor Ukleev氏 との議論が参考になっています。ここに謝意を表します。 参考文献

- 1) F. de Bergevin and M. Brunel: Phys. Lett. 39A, 14 (1972).
- 2) M. Blume: J. Appl. Phys. 57, 3615 (1985).
- 3) K. Namikawa, M. Ando, T. Nakajima and H. Kawata: J. Phys. Soc. Jpn. 54, 4099 (1985).
- M. Blume and D. Gibbs: Phys. Rev. B 37, 1779 (1988). 4)
- 5) G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm and G. Materik: Phys. Rev. Lett. 58, 737 (1987).
- 6) G. Schütz, R. Wienke, W. Wilhelm, W. Wagner, R. Frahm and P. Kienle: Physica B 158, 284 (1989).
- 7)有馬孝尚:放射光 27,290 (2014).
- 8) M. Matsubara, Y. Shimada, T. Arima, Y. Taguchi and Y. Tokura: Phys. Rev. B 72, 220404R (2005).
- M. Matsubara, Y. Shimada, K. Ohgushi, T. Arima and Y. (\mathbf{q}) Tokura: Phys. Rev. B 79, 180407R (2009).
- 10) Y. Yamasaki, D. Morikawa, T. Honda, H. Nakao, Y. Murakami, N. Kanazawa, M. Kawasaki, T. Arima and Y. Tokura: Phys. Rev. B 92, 220421 (R) (2015).
- 11) A. N. Bogdanov and D. A. Yablonskii: Sov. Phys. JETP 68, 101 (1989).
- 12)S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii and P. Boni: Science 323, 915 (2009).
- 13) X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa and Y. Tokura: Nature 465, 901 (2010).
- 14) H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T. Arima, Y. Tokura and S. Ishiwata: Sci. Adv. 2, e1501117 (2016).
- 15) B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi and T. Arima: Science 323, 1329 (2009).
- 16) J. W. Kim, Y. Choi, Jungho Kim, J. F. Mitchell, G. Jackeli, M. Daghofer, J. van den Brink, G. Khaliullin and B. J. Kim: Phys. Rev. Lett. 109, 037204 (2012).
- J. Yamaura, K. Ohgushi, H. Ohsumi, T. Hasegawa, I. 17) Yamauchi, K. Sugimoto, S. Takeshita, A. Tokuda, M. Takata, M. Udagawa, M. Takigawa, H. Harima, T. Arima and Z. Hiroi: Phys. Rev. Lett. 108, 247205 (2012).
- 18) K. Ohgushi, J. Yamaura, H. Ohsumi, K. Sugimoto, S. Takeshita, A. Tokuda, H. Takagi, M. Takata and T. Arima: Phys. Rev. Lett. 110, 217212 (2013).

- 19) H. Sagayama, D. Uematsu, T. Arima, K. Sugimoto, J. J. Ishikawa, E. O'Farrell and S. Nakatsuji: Phys. Rev. B 87, 100403R (2013).
- S. Fujiyama, H. Ohsumi, K. Ohashi, D. Hirai, B. J. Kim, T. 20)Arima, M. Takata and H. Takagi: Phys. Rev. Lett. 112, 016405 (2014).
- 21) S. Tardif, S. Takeshita, H. Ohsumi, J. Yamaura, D. Okuyama, Z. Hiroi, M. Takata and T. Arima: Phys. Rev. Lett. 114, 147205 (2015).
- 22)L. Braicovich, L. J. P. Ament, V. Bisogni, F. Forte, C. Aruta, G. Balestrino, N. B. Brookes, G. M. De Luca, P. G. Medaglia, F. Miletto Granozio, M. Radovic, M. Salluzzo, J. van den Brink and G. Ghiringhelli: Phys. Rev. Lett. 102, 167401 (2009).
- 23) Y. Hashimoto, S. Daimon, R. Iguchi, Y. Oikawa, Ka Shen, K. Sato, D. Bossini, Y. Tabuchi, T. Satoh, B. Hillebrands, G. E. W. Bauer, T. H. Johansen, A. Kirilyuk, T. Rasing and E. Saitoh: Nature Commun. 8, 15859 (2017).
- 24) S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt and J. Stöhr: Nature 432, 885 (2004).
- 25) V. Ukleev, Y. Yamasaki, D. Morikawa, N. Kanazawa, Y. Okamura, H. Nakao, Y. Tokura and T. Arima: Quantum Beam Sci. 2, 3, (2018).

著者紹介

有馬孝尚

東京大学 新領域創成科学研究科 教授 E-mail: arima@k.u-tokyo.ac.jp 専門:物質科学 [略歴]

1988年 東京大学大学院工学系研究科修 士課程修了,1994年 博士 (理学)。 東レ株式会社高分子研究所、東京大学理学

部助手, 東京大学工学系研究科助手, 筑波 大学物質工学系助教授, 東北大学多元物質 科学研究所教授を経て、2011年4月より 現職。現在,理化学研究所創発物性科学研 究センターを兼務。

Resonant X-ray scattering for studying magnetism

Taka-hisa ARIMA		Department of Advanced Materials Science, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa RIKEN Center for Emergent Matter Science, Hirosawa 2-1, Wako	
Abstract	It has been understood for more than thirty years that magnetic moments in matter scatt The resonant enhancements of the magnetic scattering near the core levels have been a known. Nonetheless, useful resonant x-ray scattering studies on magnetism in matter we rare yet. The particularities of x-ray scattering different from neutron scattering should b nized for useful x-ray scattering studies of magnetism. For example, magnetic materials		

ing 5d transition elements or lanthanide elements can be good targets. The eight-dimensional observation including imaging or time-resolved measurements will become a main objective in this field.