特集:放射光利用の広がり(1)

高分解能マイクロビーム X 線回折法による InGaAsP 選択成長層の評価 --第3世代放射光の産業利用の例として---

木村滋

NEC 基礎研究所*

Characterization of InGaAsP Selective-Growth Layers Using High-Resolution Microbeam X-ray Diffraction —As an Example of Industrial Application of 3rd Generation Synchrotron Radiation— Shigeru KIMURA

Fundamental Research Laboratories, NEC Corporation

Abstract

We developed the high-resolution microbeam x-ray diffraction method to define optical devices for a typical example of industrial application of 3rd generation synchrotron radiation. Using the method, the lattice constants of quaternary alloy (InGaAsP) compound semiconductors selectively grown in microscopic regions measuring $1.7 \,\mu$ m in width were accurately measured. It is now possible to define the composition of the selectively grown InGaAsP layers with roughly 100 times more accuracy compared with the traditional technologies.

1. はじめに

波長1.3~1.6 µm で発振する半導体レーザは,現代社会 において必要不可欠な半導体素子の一つとなっている。何 故ならば、この半導体レーザは光通信において光信号を発 生させる光源であり,これなしでは社会インフラが成り立 たないといっても過言ではない。音声電話に始まり、各種 データ通信ネットワークも今や光通信なしでは存在できな い。また、近年世界中で爆発的に拡大しつづけているイン ターネットは、急激なペースで通信容量の拡大を要求し続 けている。この要求に対し基幹回線網では、波長分割多重 (wavelength division multiplexing: WDM) による高速化 が急速に進展してきており、すでにサブT/sのスループ ットに達しつつある。一方、加入者系に対しても、各加入 者端までの配線を既存の銅配線から光ファイバーへ置き換 えるファイバー・トゥー・ザ・ホーム (fiber-to-the-home: FTTH) が急速に立ち上がっている。このように加入者端 にまで光通信網を張り巡らせるためには、いかに低コスト でネットワークを構築できるかが大きな課題であり、光通 信用の半導体レーザに対しても低コスト化の要求が大きく なっている。このような高機能・高性能化と低コスト化を 両立する1つの解として、InGaAsP系材料の狭幅選択 MOVPE (Metal-Organic Vapor Phase Epitaxy) 法を用い た素子作成方法が注目されている。狭幅選択 MOVPE 法 とは、InP(100) 基板上の[011] 方向に成膜された一対の SiO₂ ストライプマスクに挟まれた 2 µm 以下の狭い領域に 選択的に MOVPE 成長する方法である (Fig. 1)^{1,2)}。この 方法の長所は、SiO2ストライプマスク幅を変化させるこ

とにより、同一成長条件でも、選択成長層の膜厚、結晶組 成を変化させることが可能であることと、(100)面と(111) B面に囲まれた理想的な光導波路がエッチングを行うこと なく自動的に形成できることである(Fig. 2)。この長所 を活かすと、これまで選択エッチングと再成長を繰り返し て作製していた光集積素子を選択成長マスク形成と1回 のMOVPE 成長で実現可能になる。それにより、比較的 安価に各種の光集積素子^{3,4)}や高性能レーザーダイオード⁵⁾ 等を作製できる可能性が大きいことが示された。

このような特長を持つ狭幅選択 MOVPE 法により素子 を作製する場合,狭い領域の InGaAsP 選択成長層の膜 厚,結晶組成(バンドギャップ,格子歪量)をデバイス設 計通りに制御して、その結晶性を良好なものにすることが 非常に重要となる。そのためには、選択成長において SiO₂マスク幅によって変化する InGaAsP 組成を定量的に 把握することが必須である。基板全面にエピタキシャル成 長された InGaAsP 層の場合には、フォトルミネッセンス (Photo-Luminescence: PL) と高分解能 X 線回折(High-Resolution X-Ray Diffraction: HRXRD) 法により, バン ドギャップと格子歪量を求め、それらから組成を決定する ことが定常的に行われている。しかし、選択成長層に対し ては,これまでは顕微フォトルミネッセンス (μ-PL) に よるバンドギャップの測定しかできておらず、正確に組成 を判断するのは困難な状況であった。その理由は、マイク ロメーターオーダーの領域で HRXRD 法を行えなかった ためである。

最近,米国にある第三世代放射光施設 APS (Adovan-

^{*} NEC 基礎研究所 〒305-8501 つくば市御幸が丘34番地

TEL: 0298-50-1144 FAX: 0298-56-6137 E-mail: s-kimura@bl.jp.nec.com

Figure 1. Schematic figure of narrow-stripe selective-MOVPE growth.

Figure 2. A cross-sectional SEM photograph of selectively grown InP/InGaAsP layers.

ced Photon Source)の Cai らが高輝度放射光を利用して、 小さなピンホールやフレネル・ゾーン・プレートと呼ばれ る集光素子で形成したマイクロメーターオーダーの X線 ビームを使い選択成長 InGaAsP 多重量子井戸構造の超格 子衛星反射が測定できることを示した⁶⁾。しかし、上記の X線マイクロビームは10⁻⁴ ラジアン程度の角度広がりを 持つため、超格子の衛星反射のように基板ピークから離れ た位置に現れる反射を測定する場合には有効であるが、基 板ピークの極めて近い位置に現れる歪の小さい選択成長層 からの回折ピークを測定するのには使い難いものであった。

そこで、我々は、マイクロメーターオーダーの領域で HRXRD 法を実現するために、SPring-8の兵庫県ビーム ライン(BL24XU)において、シリコンの非対称反射を 利用した角度広がり、および、エネルギー広がりの小さい X線マイクロビームによる HRXRD 法を開発してきた。 これまでに、エネルギー15 keV の硬 X線で、試料位置で のビームサイズ7.1 μ m(水平方向)×4.8 μ m(垂直方向), 発散角7.7 μ rad,エネルギー幅66 meVのX線マイクロ ビームを作製することに成功し、 Δ d/d~10⁻⁶の微小な歪 を局所的に測定できることを示した⁷⁷。このマイクロビー ムは HRXRD 測定に十分な性能を持っているため、我々 は InP 基板上の幅1.7 μ mの狭いストライプ領域に選択成 長された InGaAsP の HRXRD 測定を行った。その結果, ビームサイズは選択成長領域の幅より大きいものの、両端 に SiO₂マスクが存在するので選択成長層のみからの回折

Figure 3. An optical micrograph of the sample structure.

ピークを明瞭に捕えることができ,格子歪量の定量的測定 に成功した⁸⁾。これにより,これまで不可能であった $In_xGa_{1-x}As_yP_{1-y}$ のIn組成(x)とAs組成(y)を一義的 に決定することが可能になり,マスク幅によって変化しな いと思われていたAsの組成が変化することが明らかにな った。

本報では,第三世代放射光の産業利用の例として, InGaAsP 選択成長層の歪測定技術を紹介し,得られた結 果が半導体光デバイス製品の特性向上に直接貢献できたこ とを示す。

2. 実験

2.1 試料

今回測定した試料は、n型 InP(100) 基板上[011]方向に 一対の SiO₂ ストライプマスク(マスク幅 W_m = 4~40 μ m,開口幅 Wo = 1.7 μ m)が形成されたパターン基板を 用いて選択成長した InGaAsP 層である。基板上のストラ イプマスクが形成されていない領域に常圧 MOVPE 法に より InGaAsP 層と InP キャップ層を選択成長した(**Fig. 3**)。Ⅲ族ソースにはトリメチルインジュウム(TMIn)と トリメチルガリウム(TMGa)を、V族ソースにはアルシ ン(AsH₃)とフォスフィン(PH₃)を使用した。非選択 成長領域(W_m = 0 μ m)に形成された In_xGa_{1-x}As_yP_{1-y}の 組成は、x = 0.56, y = 0.61であった。また、非選択成長領 域での InGaAsP 層と InP キャップ層の厚さは、両方とも 約20 nm であった。

Figure 4. The experimental arrangement setup at BL24XU.

2.2 実験方法

今回の実験で使用した X線光学系の配置図を Fig.4 に 示す。実験は SPring-8 BL24XU の C ハッチで行なった。 このビームラインは8の字アンジュレータからの高輝度 X線が利用できるビームラインである⁹⁾。今回の実験で は、アンジュレータ光から垂直軸型 Si 111二結晶分光器 により1.5次光である15 keVのX線を取り出して利用し た。そのX線をソースポイントから65mの位置に設置さ れた4象限スリットで,100 µm (水平)×50 µm (垂直) に整形した後,水平方向と垂直方向にそれぞれ2回ずつ FZ-Si(100)の511非対称反射を行なうことにより、ビーム サイズの圧縮を行なった。非対称反射によるビームの圧縮 は、非対称因子 b=sin $(\theta_{B}+\alpha)/sin(\theta_{B}+\alpha)$ の逆数倍にな る。ここで、 $\theta_{\rm B}$ はブラッグ角、 α は表面と回折面とのな す角であり、今回の場合、 $\theta_{\rm B}=23.29^{\circ}$ 、 $\alpha=15.79^{\circ}$ である ため、b=4.83となり、ビーム幅は水平方向、垂直方向と もに1/b²=1/23.3=0.043倍に圧縮される。ビームに発散 角がなければ100×50 µm²のビームを圧縮しているので, 4.3×2.2 µm²のビームが得られることになるが、実際には 511非対称反射のビーム発散によって 4-5 µm ビームサイ ズは大きくなる。試料位置でのビームサイズを測定するた めに, 試料位置でナイフエッジを水平方向, 及び垂直方向 にステップ幅1µmで移動させ透過X線強度を測定した。 その結果,試料に入射するX線のビームサイズの実測値 は7.3 µm (水平方向)×6.4 µm (垂直方向) であった。ま た、光学系の幾何学配置を考慮して見積もられたビームの 角度発散は、水平方向で7.7 µrad、垂直方向で5.3 µrad で あり、エネルギー幅は66 meV である。なお、ビームフラ ックスはこの非対称反射光学系により約1/15000に減少し たが、HRXRD 測定には充分な量であった。

このマイクロビームを入射X線として,サブミクロン の精度で試料の位置決めができるXYZ移動ステージを備 えた垂直軸型高精度2軸回折計によりHRXRD測定を行 った。試料は,[011]方向が水平線と平行になるようにセ ットした。試料中の目的とする微小領域にマイクロビーム

Figure 5. A measured InP 400 peak profile at the non-selective growth region $(Wm = 0 \ \mu m)$ of the sample.

X線を入射させる方法は、以下6段階の手順で行なっ た。まず,1)試料を取り付けるゴニオヘッドに円錐形の ピンを取りつけ、2)そのピンの先がマイクロビームの中 心にくるように透過光強度をモニターしながら調整する。 その後,3) 焦点距離300 mm で約200倍の拡大像が得られ る望遠レンズを取り付けた CCD カメラ2 台で2 方向から ピンの先端を観察し、4)モニター画面上に記録する。さ らに、5)ピンを外して、試料をゴニオヘッドに取り付 け、最後に、6)目的とする微小領域が2台のモニター上 のビームを記録した位置にくるように調整する。ロッキン グ曲線の測定は、InP 400回折ピーク周りを0.004°ステッ プで微小回転させながらシンチレーション検出器により回 折強度を計測することにより行った。計測時間は1点10 秒で行った。また、この測定に先立って、正確な InP 400 のピーク角度位置と半値幅を求めるために,非選択成長領 域において InP 400基板ピークを0.0002°ステップで測定 した。この時、シンチレーション検出器の数え落としを防 ぐために検出器の前に1mm 厚のAl吸収板を設置して測 定した。

3. 結果と考察

Figure 5 に非選択成長領域で測定した InP 400のロッ キング曲線を示す。この曲線の半値幅は21.7 µrad であっ た。この値は、理想的な InP 400の半値幅18.8 µrad と非 常に近く、本測定光学系が HRXRD 測定に有効であるこ とを証明している。Figure 6には狭幅選択成長層と非選 択成長領域で測定した一連のロッキング曲線を示す。 **Figure 6** で, 横軸は, $\Delta q/q = \Delta \theta \cot \theta_{\rm B}$ でプロットしてい る。ここで、*Δθ*は InGaAsP 層ピーク位置と InP 基板 ピーク位置との差(単位はラジアン), θ_Bは InP 基板のブ ラッグ角である。 $W_m = 30 \mu m$ を除くすべての曲線で、 Δq /q=0に見られる InP 基板ピークの他に InGaAsP 選択成 長層のピークが測定できていることが分かる。選択成長層 からのピークは、Wmが増加するにつれて、強度が増加す るとともに高角側から低角側にシフトしている。狭幅選択 成長の成長速度増加現象と組成変動現象を反映している。 これらの現象は Fig. 7 に示すように,新たに2つの原料

供給経路,「SiO₂マスク上からの表面マイグレーション」 と「横方向気相拡散」,が狭幅選択成長では加わることに より起こると考えられている¹⁰。

 $\Delta q/q = -\Delta d/d$ であることは、ブラッグの法則から導け るため、基板表面に垂直な方向の InGaAsP 選択成長層の 歪は Fig. 6 のピーク位置から直接求めることができる。 Figure 8 には、マスク幅に対してプロットした基板表面 に垂直方向の歪を示す。今回測定した InGaAsP 選択成長 層は InP 基板にエピタキシャル成長しているため、ポア ッソン変形が起こっている。InGaAsP 層が完全にエピタ キシャル成長している(ミスフィット転位の発生がない) 場合、歪のない立方晶の InGaAsP の格子定数 a_0 を求める ためには、以下の式により求めることができる¹¹⁾。

$$\left(\frac{a_0 - a_{\rm InP}}{a_{\rm InP}}\right) = \left(\frac{C_{11}}{C_{11} + 2C_{12}}\right) \left(\frac{\Delta d}{d}\right),\tag{1}$$

ここで、 a_{InP} は InP 基板の格子定数で5.8686 Å である。 また、 C_{ij} は InGaAsP の弾性定数であるが、 $C_{11}/(C_{11} + 2C_{12}) = 0.502を使用した。この値は、InP、InAs、GaP、$ GaAs の弾性定数を使い In_{0.5}Ga_{0.5}As_{0.5}P_{0.5} に対して内挿し $たものである¹²⁾。(1)式により計算した<math>a_0$ も同時に Fig. 8 の右縦軸に示している。 a_0 に注目すると、マスク幅の増 加に伴い、増加しながら飽和値に近づくように変化してい

Figure 6. A series of the rocking curves from the narrow-stripe selective MOVPE grown regions and the non-selective growth region of the sample. The log of the diffraction intensity was plotted against $\Delta q/q$.

ることが分かる。InGaAsPの格子定数はベガード則に良 く従うことが知られており、InP, InAs, GaP, GaAsの格子 定数を使い次の式で表される¹²⁾。

$a_0 = 0.4174x + 0.2021y - 0.0123xy + 5.4512 \tag{2}$

(2)式から, In 組成(x), もしくは, As 組成(y)が増加 すると InGaAsP の格子定数が大きくなることが分かる。 したがって,狭幅選択成長ではマスク幅の変化に伴い, In, もしくは, As が選択成長層に取り込まれ易くなるこ とを示している。また, (2)式から, InGaAsP のような 4 元混晶では,格子定数の測定のみからでは組成を決定でき ないことも分かる。

Figure 9に μ -PLにより測定された PLピーク波長を示 す。この PL 波長データと **Fig. 8**の格子定数のデータか ら、InGaAsP 組成を一義的に導出できる。その結果を **Fig. 10**に示す。●がⅢ族(In)組成を、○がV族(As) 組成を表している。この結果、これまでオージェ電子分光 法による測定で観測されず変化しないとされていたV族組 成がマスク幅の増加とともに変化していることが初めて観 測された。さらに、As 組成yは単調に増加するのではな く、狭いマスク幅領域($W_m < 10 \mu m$)では逆に減少する 領域が見られる。このことは、V族組成の変動要因に複数 のメカニズムがあり、しかもそれらが As 原料とP 原料で

Figure 7. Schematic drawing of the narrow-stripe selective MOVPE growth mechanism.

Figure 8. Mask width dependence of the perpendicular strain $\Delta d/d$ and the unstrained lattice parameter a_0 for narrow-stripe selective MOVPE grown InGaAsP layers.

Figure 9. Mask width dependence of photoluminescence peak wavelength for narrow-stripe selective MOVPE grown InGaAsP layers.

Figure 10. Mask width dependence of the composition change for narrow-stripe selective MOVPE grown InGaAsP layers.

各々逆方向の効果をもたらしている可能性があると考えら れる結果である。

4. まとめ

SPring-8 兵庫県ビームラインを利用した高分解能マイ クロビームX線回折法により,狭幅選択 MOVPE 法で InP 基板上の幅1.7 µm の狭いストライプ領域に選択成長 された InGaAsP 層からの回折ピークを測定することに成 功した。その結果,選択成長された InGaAsP 層の格子歪 量、および、格子定数を定量することが可能になった。 InGaAsPのような4元混晶の組成を同定するためには、 バンドギャップと格子歪量の両方を測定する必要がある が,これまでは *µ*-PL によるバンドギャップの測定しかで きていなかった。今回, SPring-8 を利用したマイクロ ビーム X線回折により初めて,格子歪量の定量に成功し た。この結果, $In_xGa_{1-x}As_vP_{1-v}$ の In 組成(x) とAs 組 成(y)を一義的に決定することが可能になり、これまで マスク幅によって変化しないと仮定されていた As の組成 が変化することも明らかになった。これらの結果をデバイ ス作製にフィードバックすることにより、結晶組成と格子 定数をデバイス設計通りに制御することが可能になり、素 子の発光特性が約40%も向上した。この結果は、WDM 光通信ネットワーク用光集積素子の製品開発に活かされて いる。

最後に,放射光の産業利用に関する筆者の感想を述べさ せていただきたい。現状で放射光の産業利用を考えると き,時間がかかり過ぎることが最大のネックであろう。企 業とすれば,問題が解決できるのであれば手段は何でも良 く,測定するまでに時間のかかる放射光利用はどうしても 敬遠されがちである。産業利用を活性化するためには,ス ピーディに対応ができるような新しい仕組み作りが必要で あろう。他方,放射光以外ではできない手法により産業応 用上重要な知見が得られることを数多く示し,少々時間が かかっても放射光を利用することは有効だと企業に認知さ せることも重要であると考える。企業の研究所で10年以 上も放射光研究に携わっている者として,これからも放射 光の特長を活かしたユニークな測定法を開発し,製品開発 に有効であることを示していくことにより,少しでも産業 利用の活性化に貢献していきたいと思っている。

謝辞

本報で紹介した研究は、NEC 基礎研の木村英和氏,小 林憲司氏,泉弘一氏,および,姫路工業大学の松井純爾教 授をはじめとする X 線光学講座の皆様との共同研究であ り,SPring-8 兵庫県ビームラインで行われたものである (課題 No. C99B24XU-545N)。研究遂行に関してお世話 になった方々に感謝致します。

参考文献

- T. Sasaki, M. Kitamura and I. Mito: J. Cryst. Growth 132, 435 (1993).
- Y. Sakata, T. Nakamura, S. Ae, T. Terakado, Y. Inomoto, T. Torikai and H. Hasumi: J. Electron. Mat. 25, 401 (1996).
- 3) H. Yamazaki, Y. Sakata, M. Yamaguchi, Y. Inomoto and K. Komatsu: Electron. Lett. **32**, 109 (1996).
- T. Takeuch, T. Sasaki, M. Hayashi, K. Hamamoto, K. Kakita, K. Taguchi and K. Komatsu: IEEE Photon Tech. Lett. 8, 361 (1996).
- Y. Sakata, T. Hosoda, Y. Sasaki, S. Kitamura, M. Yamamoto, Y. Inomoto and K. Komatsu: IEEE J. Quantum. Electron. 35, 368 (1999).
- Z. Cai, W. Rodrigues, P. Legnini, B. Lai, W. Yun, E. D. Isaacs, K. E. Lutterodt, J. Glew, S. Sputz, J. Vandenberg, R. People, M. A. Alam, M. Hybertsen and L. J. P. Ketelsen: Appl. Phys. Lett. **75**, 100 (1999).
- Y. Tsusaka, K. Yokoyama, S. Takeda, M. Urakawa, Y. Kagoshima, J. Matsui, S. Kimura, H. Kimura, K. Kobayashi and K. Izumi: Jpn. J. Appl. Phys. 39, L635 (2000).
- S. Kimura, H. Kimura, K. Kobayashi, T. Oohira, K. Izumi, Y. Sakata, Y. Tsusaka, K. Yokoyama, S. Takeda, M. Urakawa, Y. Kagoshima and J. Matsui: Appl. Phys. Lett. 77, 1286 (2000).
- 9) http://www.spring8.or.jp/JAPANESE/facility/bl/
- 10) Y. Sakata, Y. Inomoto and K. Komatsu: J. Cryst. Growth 208, 130 (2000).
- 11) J. Honstra and W. J. Bartels: J. Cryst. Growth 44, 513 (1978).
- 12) J. R. Flemish, H. Shen, K. A. Jones, M. Dutta and V. S. Ban: J. Appl. Phys. 70, 2152 (1991).